

図-6.10.1.72 リーフ内の断面形状解析位置

- (b) 地盤高(深浅測量)
- a)海底地形

深浅測量により得られた等深浅図を図-6.10.1.73に示します。また、当該海 域の海底地形の状況についてとりまとめた結果を、表-6.10.1.25に示します。 なお、ここでは、後述する「6.13海域生物」における重要な分布状況や「6.19.1 海域生態系」における動植物の種の構成において整理した 7 つの海域区分に着 目して整理を行いました。

表-6.10.1.25 海域区分ごとの海底地形及び底質分布の状況

海域区分	海底地形、底質分布の状況					
松田~豊原地先 辺野古地先	・海岸から1~1.5kmの遠方までの範囲にリーフがみられ、その最浅部は最干時に 海面から露出します。					
	・リーフの外洋側は、非常に複雑な礁地形となっており、水深 40m まで急斜面を形成しています。また、リーフを切るように、名護市-宜野座村境界付近に水深 10m の谷地形がみられます。					
	 ・リーフ内は、岸側は礫質・砂質からなる比較的平坦な地形であり、沖側はサンゴ・ 岩などにより小規模で複雑な地形が広く分布しています。 					
	・潟原、久志及び辺野古漁港の前面には、平坦な干潟が形成されています。					
大浦湾西部 大浦湾奥部	・辺野古崎側ではキャンプ・シュワブ内の大浦ビーチ付近に水深 5m の張り出しが 見られるほかは、海岸線付近から急斜面となって大浦湾に侵入する海底谷へと至 っています。					
	 ・海底谷の深さは 69m で海釜状の地形を呈しており、水深 5m における最も狭い幅 は約 400m です。この谷は、辺野古側の海岸線に平行に大浦湾奥の二見付近まで、 約 4km の長さで、当該海域では特異的なシルト・粘土分の多い底質が帯状に分布 しています。 					
	 ・汀間漁港から瀬嵩を経て大浦に至る海岸には、岩礁やサンゴ礁が存在し、比高は小さいですが、複雑な地形となっています。最も湾奥の大浦川及び楚久前面には、砂泥が干潟を形成しています。 					
	 ・大浦湾中央付近では、細砂分の多い締まった底質となっています。 					
大浦湾口部	 湾口ほぼ中央にリーフが形成されており、その最浅部は局部的に 0m よりも浅くなっています。その背後(湾内)にも、10m 等深線で囲まれる非常に複雑な地形が存在し、両者を合わせた規模は、湾口方向に 1.5km、湾奥方向に 2km の幅があります。 					
大浦湾東部	・海岸から 0.5km 付近まで、リーフや岩礁がみられ、一部干出します。					
	 ・比較的緩やかな海底谷が入り込んでいますが、大浦湾西部の谷のような海釜地形 を持たず、水深25mの緩やかな高まりによって外洋と区分されます。これらの谷 地形の底は、緩やかで比較的平坦な地形となっており、堆積物に覆われているも のとみられます。 					
安部~嘉陽地先	 ・海岸から1km付近までリーフや岩礁がみられ、リーフ内の岸側は砂礫質からなる 比較的平坦な地形であり、沖側は岩礁により小規模で複雑な地形となっています。 					

b)水深変化

台風期前後の調査結果の比較により、大浦湾内の水深 20m 以深の谷状地形に おいて 20cm 程度の堆積傾向がみられました。一方、水深 10m 以浅の海域では、 堆積域と侵食域が小規模に散在しており、変化量は概ね 10cm 以下でした。また、 平成 19 年度の調査では、図-6.10.1.74に示すとおり、堆積・侵食傾向はほぼ同 様であり、変化量はより大きな規模の台風来襲などの影響でやや大きい状況で した。

図-6.10.1.74 平成19年台風期前後の地形変化(前後の深浅測量結果の比較より)

(c) 底質分布(粒度組成)

当該海域の底質は、全体では中砂分を主体とする砂質であり、大浦湾沿岸部 や辺野古前面のリーフ上では細砂以上の砂分や礫分が多く分布しており、大浦 湾中央付近では細砂分の多い締まった底質となっています。さらに、大浦湾南 西側の水深の深い部分には、当該海域では特異的にシルト・粘土分の多い底質 が深みに沿って帯状に分布していることがうかがわれました。

当該海域の底質分布の状況については、海底地形の状況とともに海域ごとに とりまとめた結果を表-6.10.1.25に示しました。

台風期前後において水深の浅い地点で粗粒化及び細粒化を示す傾向が散見されましたが、大きな変化はありませんでした。なお、平成 19 年度と平成 20 年度の粒度組成の変化状況を比較するとほぼ同じような傾向がみられますが、気象じょう乱の規模や発生回数等が異なるため、細部には違いが認められます。

- (d) 海域の現存土砂量
- a) 堆積厚調查

海域の現存土砂量について、深浅測量調査における音響測深機(底質探査装置)による記録から、堆積厚を解析することにより求めました。具体的には、 音響測深記録における特徴的な記録(表層に見られる縞状の記録がスダレ状に 変化する位置)を表層堆積物の下面位置に相当するものとして、海底面からの 厚さを読み取りました。なお、使用した音響測深器は、高周波(200kHz)と低 周波(5~10kHz)を同時発信するもので、堆積厚を示す縞状の記録は低周波で 記録されます。

平成19年7月における現地調査結果をもとに土砂堆積厚の分布を解析した結 果を図-6.10.1.75に示します。ここで、平成19年7月の調査結果は平成20年 度の調査結果よりも調査範囲が広いこと、両者が重複する範囲での全般的な特 徴は同様であることから、平成19年7月の調査結果をもとに解析を行いました。

特徴のひとつとして、リーフエッジ周辺においては、底質の堆積厚が非常に 小さい状況が挙げられます。波による底面摩擦応力が大きく、粒径の小さい底 質が定着しにくい環境になっていると考えられます。

図-6.10.1.75 現地調査結果をもとに作成した土砂堆積厚の平面分布 注)図中の等深線は10m間隔で示しています。

b)海陸起源推定のための調査

砂浜及びリーフ内の13箇所で分析試料を採取し、砂中の炭酸カルシウム含有 量を分析しました。なお、ここでは、砂中に含まれる炭酸カルシウム分は貝殻 やサンゴ片に由来するものとし、その他を陸源性の砂としました。

分析結果を図-6.10.1.76に示します。全般的に炭酸カルシウムからなる現地 性の砂が多く、河口部では河川から流入する陸源性の土砂が多くなっていました。

図-6.10.1.76 底質の炭酸カルシウム分析結果(平成 20 年 6 月 18 日調査、重量比)

- (e) 陸域からの供給土砂量
- a)降雨時における河川からの供給土砂量

平成 20 年 9 月 13 日に実施した降雨時の現地調査結果によれば、事業区域周 辺の主要 5 河川(辺野古川、美謝川、杉田川、大浦川及び汀間川)の 24 時間連 続観測による日土砂量の合計は約 15,000kg/day でした。容量に換算すると、約 5. $6m^{3}/day$ です。現地観測による 24 時間雨量は 85mm であり、名護における年間 降水量の平年値が 2,127mm なので、事業区域周辺の河川から供給される土砂量 は、5. 6×2 , 127/85 = 140 (m³/年)程度と推定されます。

一方、リーフ内の土砂量は平成19年度の現地調査結果(図-6.10.1.75参照) で約660万m³、平成20年度調査結果で約600万m³と算定されています。よって、 河川から1年間に供給される土砂量は、リーフ内に現存する土砂の1/40,000程 度です。

b)海蝕崖からの供給土砂量

事業区域周辺の 3 地点で行われた現地調査結果によれば、断面積の平均的な 変化量は 0.33~0.50m²/年でした。3 地点平均では 0.39m²/年です。海蝕崖の総延 長は、大きく見積もっても 5,000m程度ですから、海蝕崖から供給される総土砂 量は最大でも 0.39×5,000=1,950 \Rightarrow 2,000m³/年と見積もることができます。一 方、リーフ内の土砂量は前述のように約 600 万 m³と算定されているので、海蝕 崖から 1 年間に供給される土砂量は、大きく見積もってもリーフ内に現存する 土砂の 1/3,000 程度です。

なお、波・流れ・風雨等によって侵食された海蝕崖からの土砂は、同じ作用 によって海域に対して同時に全てが供給されるのではなく、前面の砂浜等に一 旦崩れ落ち、その後の別の作用により海域に供給されるという過程も想定され ます。

(f) 漂砂量

捕砂器により捕集された浮遊砂は、シルト分が最小で 52%、最大で 82%程度 と、シルト分が卓越していました。また、台風の接近に際して、濁度が 100mg/L を超える箇所がありました。

- (g)陸域及び海岸域における重要な地形・地質
- a) 陸域

事業実施区域は沖縄島北部東海岸に位置しており、地形は主に丘陵地及び台 地・段丘が占めています。当該地域の地形は、かつてこの地域が海面下にあっ て長期間にわたり波浪による侵食作用を受け、突出部が削剥されて平坦化され、 その平坦部に海底堆積物が堆積し、その後、隆起及び海退により陸地化し、風 化作用や侵食作用を受けて形成されたものです。

したがって、現在の事業実施区域の丘陵部頂部は、かつては海底であり、段 丘面における丘陵地の標高は約 80m前後で、これらを侵食して小河川が流路を 形成しています。

事業実施区域周囲の陸域には、法律、条例等で定められた重要な地形及び地 質(史跡・名勝・天然記念物)はありませんが、学術上又は希少性の観点から 重要と判断される地形及び地質として、環境省による「第3回自然環境保全基 礎調査」において、名護市や宜野座村をはじめ沖縄本島で一般的にみられる海 岸沿いの段丘地形である海成段丘が、自然景観資源に指定されています。 「土地分類基本調査報告書」(沖縄県、平成3年)によれば、事業実施区域 周囲において地質構造上のブロックごとに段丘面が確認されていることから、 本調査では、その分布状況を地形図、空中写真等を用いて把握しました。

b)海岸域

事業実施区域周囲の地質層は、基盤となる国頭層群の嘉陽層(砂岩、千枚岩 の互層)を被覆して、琉球層群(琉球石灰岩)や沖積層(砂礫等)が広く分布 しています。海岸域の表層地質は、概ね嘉陽層が分布していますが、安部オー ル島、安部崎周辺、長島・平島、辺野古漁港前のトゥンガー、辺野古川右岸の 按司墓のある岩塊(タカシダキ)、宜野座村松田地区海岸部などでは、琉球石 灰岩層が認められます。

事業実施区域周囲の海岸域には、地殻の変動により形成された嘉陽層の互層、 褶曲及びずれ・断層や琉球石灰岩層または国頭礫層との不整合面の露頭、海の 作用(波の侵食作用、海水の溶食作用等)により形成された波蝕棚、海蝕崖、 ノッチ、ビーチロック等の特徴的な地形がみられます。

これらの地形は、当該海域の自然景観を構成する重要な要素となっており、 学術上又は希少性の観点からも重要であると考えられます。このため、本調査 では安部オール島から宜野座村松田に至る海岸、並びに平島・長島を対象とし て、これらの重要と判断される地形・地質の分布状況を現地踏査により把握し、 その結果をもとに重要な地形・地質の分布図をとりまとめました。 (h) 波浪(波向・波高)の状況

波浪の調査は図-6.10.1.77及び表-6.10.1.26に示す計23地点で行いました。 大浦湾内の有義波高は、静穏時は概ね1m未満ですが、台風等の低気圧や気圧 の谷が接近した際には沖合で3.0m以上、湾中央部や湾口部でも1.0m以上の高 波浪が出現する場合もありました(図-6.10.1.78、図-6.10.1.79参照)。大浦 湾奥部及び辺野古前面のリーフ内は相対的に波浪が小さく、静穏時で0.1~0.2 m、台風接近時でも0.3~0.5mでした。

春季や夏季は気象状況に応じて波浪が大きく変化する場合がみられましたが、 秋季や冬季は有義波高 1m 前後の波浪が継続して来襲する傾向にありました。

図-6.10.1.80に示すとおり、沖波の波高(K-24 の波高)に対する波高比の平 均値(回帰直線の傾き)は、大浦湾の湾奥部(K-2)で 0.136、湾口部(K-13) で 0.412、辺野古前面のリーフ内(K-22)で 0.128 でした。また、波向による差 が非常に小さいことを確認しました。この結果によれば、辺野古前面のリーフ 内へ作用する波のエネルギーは、沖波に対して僅か 1.6%(=0.128²)程度です。

沖波の波高と各地点の波高には、比較的高い相関が認められますが、ある程度のバラつきもみられます。その原因のひとつとして、潮位条件による砕波の影響の違いが挙げられます。図-6.10.1.79の波高の経時変化で短周期の波高の変動がみられますが、12時間周期の潮位の干満に概ね対応しています。

図-6.10.1.77 波浪調査地点(〇は調査結果の代表例を示した地点)

調査地点	K-1	К-2	K-3	K-5	К-6	K-7	K-8	K-9
水深(m)	2.5	1.5	3.5	23.8	0.5	33.0	20.9	4.5
調査地点	K-12	K-13	K-15	K-16	K-18	K-22	K-23	K-24
水深(m)	28.2	18.0	0.5	1.5	1.8	1.5	3.3	36.8
調査地点	K-38	K-39	K-40	K-42	K-43	K-48	K-49	
水深(m)	4.1	28.3	39.4	39.3	3.5	3.8	41.0	

表-6.10.1.26 波浪調査地点の水深

注)K24 地点は通年観測。

図-6.10.1.78 夏季調査時における波向別有義波高頻度

図-6.10.1.80 沖波の波高(K-24 の波高)に対する大浦湾の湾奥部(K-2)、湾口部 (K-13)及び辺野古前面のリーフ内(K-22)の有義波高の波高比

(平成20年度の四季を通じた観測データの比較)

(i) 空中写真の解析(海岸線)

数年~数10年の砂浜の長期的変動を把握するため、空中写真の解析を行いました。

a)調査範囲

対象範囲は、別途行った「6.9 水象」の予測における波浪の変化域及び過去に おける海岸構造物の築造履歴(辺野古漁港及び汀間漁港)を考慮します。一方、 当地の砂浜は、図-6.10.1.81に示すように岩礁などにより砂浜が断続的に分布 しています。すなわち、漂砂系が断絶されている箇所が多く、全域を通して解 析(予測)することは困難です。以上を踏まえ、図-6.10.1.81に示す 3 か所を 重点的に検討する範囲として空中写真の解析を行うこととしました。

- (ア) 辺野古漁港から辺野古崎に至る海岸
- (イ) 辺野古弾薬庫付近のポケットビーチ
- (ウ) 瀬嵩の鼻から汀間漁港側に分布する砂浜

(辺野古地区、大浦湾奥・汀間地区)図-6.10.1.81 砂浜の分布状況と空中写真の解析範囲

b)解析結果

(ア) 辺野古漁港から辺野古崎に至る海岸

表-6.10.1.27に示す1971~2007年に撮影された空中写真(9回分)をもとに辺 野古漁港~辺野古崎に至る海岸の水際線を読み取り、過去の汀線変化を把握し ました。汀線の読み取り結果を図-6.10.1.82に示します。

表-6.10.1.27 空中写真一覧

No.	撮影年月日	備考	撮影
1	1971年5月16日		国土地理院
2	1972年2月10日		11
3	1977年12月7日	辺野古漁港築造開始時期	11
4	1980年11月10日	東防波堤築造中	11
5	1984年10月31日	辺野古漁港完成済	11
6	1988年11月21日		11
7	1993年09月10日	直前に高波浪あり ^{注1}	11
8	2001年01月12日		11
9	2007年08月31日	オルソ幾何補正,比較的直前に高 波浪あり ^{注2}	沖縄防衛局 ^{注3}

注) 1. 台風 9313 号によって中城湾で有義波高 6.76mを観測(9月2日)

2. 台風 0704 号によって中城湾で既往最大有義波高 13.61mを観測(7月 13日)

3. 資料:「シュワブ(H18)環境現況調査(その3)」(平成20年12月、沖縄防衛局)

上記の空中写真から、辺野古漁港の東防波堤の築造前後に着目して汀線の経 年変化を解析しました。解析期間は以下のとおりです。

- 7) 1971 年~1977 年 : 辺野古漁港築造前
- () 1977年~1984年 : 辺野古漁港築造時
- ウ) 1984 年~2007 年 : 辺野古漁港完成後

図-6.10.1.83に示した汀線の比較から以下のことが考察されます。

・辺野古崎周辺では、どの期間においても大きな地形変化は認められません。

- ・辺野古漁港近傍では、1977年~1984年にかけて汀線が約50m前進して形 状が顕著に変化しており、防波堤築造の影響であると考えられます。
- ・1993 年 9 月の汀線は、直前に発生した台風による高波の影響を受けている と考えられます(表-6.10.1.27参照)。辺野古漁港近傍での汀線の後退が 比較的大きいことが分かります。
- ・辺野古漁港完成後では、辺野古漁港の東側は汀線の前進・後退が見られる場合がありますが、汀線の形状自体の傾向的な大きな変化は見られません。後述する図-6.10.2.2.1の模式図の破線に示される長期的な変化は、現在では十分に収束して安定しているものと推測されます。

(写真は 1977 年 12 月,黒太線は現況の護岸・植生境界)

図-6.10.1.83(1) 1971年5月と1977年12月の汀線の比較

(写真は1984年10月,黒太線は現況の護岸・植生境界) 図-6.10.1.83(2) 1977年12月と1984年10月の汀線の比較