

National Defense Academy

●防衛大学校の受験等に関するお問い合せは 防衛大学校入学試験課、または最寄りの自衛隊地方協力本部募集課まで

防衛大学校教務部入学試験課 ■〒239-8686 神奈川県横須賀市走水1-10-20 TEL.046-841-3810(内線:2087·2153)

ホームページアドレス: https://www.mod.go.jp/nda/

自衛隊地方	方協力本部-	一覧	

■目衛隊	地方協力本部			
地方協力本部	所在地		電話番号	ホームページアドレス
札幌	₹060-0004	札幌市中央区北4条西15丁目1	011-631-5472	https://www.mod.go.jp/pco/sapporo/
函館	₹042-0934	函館市広野町6-25	0138-53-6241	https://www.mod.go.jp/pco/hakodate/
旭川	〒070-0902	旭川市春光町国有無番地	0166-51-6055	https://www.mod.go.jp/pco/asahikawa/
帯広	〒080-0024	带広市西14条南14丁目4	0155-23-5882	https://www.mod.go.jp/pco/obihiro/
青森	〒030-0861	青森市長島1丁目3-5 青森第2合同庁舎2F	017-776-1594	https://www.mod.go.jp/pco/aomori/
岩手	〒020-0023	盛岡市内丸7番25号 盛岡合同庁舎2F	019-623-3236	https://www.mod.go.jp/pco/iwate/
宮城	〒983-0842	仙台市宮城野区五輪1丁目3-15 仙台第3合同庁舎1F	022-295-2612	https://www.mod.go.jp/pco/miyagi/
秋田	〒010-0951	秋田市山王4丁目3-34	018-823-5404	https://www.mod.go.jp/pco/akita/
山形	〒990-0041	山形市緑町1-5-48 山形地方合同庁舎1・2F	023-622-0712	https://www.mod.go.jp/pco/yamagata/
福島	〒960-8112	福島市花園町5-46	024-531-2351	https://www.mod.go.jp/pco/fukushima/
茨城	〒310-0061	茨城県水戸市北見町1-11 水戸地方合同庁舎	029-231-3315	https://www.mod.go.jp/pco/ibaraki/
栃木	〒320-0043	宇都宮市桜5丁目1-13 宇都宮地方合同庁舎2F	028-634-3385	https://www.mod.go.jp/pco/tochigi/
群馬	〒371-0805	前橋市南町3丁目64-12	027-221-4471	https://www.mod.go.jp/pco/gunma/
埼玉	〒330-0061	さいたま市浦和区常盤4丁目11-15 浦和地方合同庁舎3F	048-831-6043	https://www.mod.go.jp/pco/saitama/
千葉	〒263-0021	千葉市稲毛区轟町1丁目1-17	043-251-7151	https://www.mod.go.jp/pco/chiba/
東京	〒162-8850	新宿区市谷本村町10番1号	03-3260-0543	https://www.mod.go.jp/pco/tokyo/
神奈川	〒231-0023	横浜市中区山下町253-2	045-662-9429	https://www.mod.go.jp/pco/kanagawa/
新潟	〒950-8627	新潟市中央区美咲町1丁目1番1号 新潟美咲合同庁舎 1 号館7F	025-285-0515	https://www.mod.go.jp/pco/niigata/
山梨	〒400-0031	甲府市丸の内1丁目1番18号 甲府合同庁舎2F	055-253-1591	https://www.mod.go.jp/pco/yamanashi/
長野	〒380-0846	長野市旭町1108 長野第2合同庁舎1F	026-233-2108	https://www.mod.go.jp/pco/nagano/
静岡	〒420-0821	静岡市葵区柚木366	054-261-3151	https://www.mod.go.jp/pco/sizuoka/
富山	〒930-0856	富山市牛島新町6-24	076-441-3271	https://www.mod.go.jp/pco/toyama/
石川	〒921-8506	金沢市新神田4丁目3-10 金沢新神田合同庁舎3F	076-291-6250	https://www.mod.go.jp/pco/ishikawa/
福井	〒910-0019	福井市春山1丁目1-54 福井春山合同庁舎10F	0776-23-1910	https://www.mod.go.jp/pco/fukui/
岐阜	〒502-0817	岐阜市長良福光2675-3	058-232-3127	https://www.mod.go.jp/pco/gifu/
愛知	〒454-0003	名古屋市中川区松重町3-41	052-331-6266	https://www.mod.go.jp/pco/aichi/
三重	〒514-0003	津市桜橋1丁目91	059-225-0531	https://www.mod.go.jp/pco/mie/
滋賀	〒520-0044	大津市京町3-1-1 大津びわ湖合同庁舎5F	077-524-6446	https://www.mod.go.jp/pco/shiga/
京都	〒604-8482	京都市中京区西ノ京笠殿町38 京都地方合同庁舎3F	075-803-0820	https://www.mod.go.jp/pco/kyoto/
大阪	〒540-0008	大阪市中央区大手前4-1-67 大阪合同庁舎第2号館3F	06-6942-0742	https://www.mod.go.jp/pco/osaka/
兵庫	〒651-0073	神戸市中央区脇浜海岸通1-4-3 神戸防災合同庁舎4F	078-261-8600	https://www.mod.go.jp/pco/hyogo/
奈良	〒630-8301	奈良市高畑町552 奈良第2地方合同庁舎1F	0742-23-7001	https://www.mod.go.jp/pco/nara/
和歌山	〒640-8287	和歌山市築港1丁目14-6	073-422-5116	https://www.mod.go.jp/pco/wakayama/
鳥取	〒680-0845	鳥取市富安2丁目89-4 鳥取第 1 地方合同庁舎6F	0857-23-2251	https://www.mod.go.jp/pco/tottori/
島根	〒690-0841	松江市向島町134-10 松江地方合同庁舎4F	0852-21-0015	https://www.mod.go.jp/pco/shimane/
岡山	= 700-8517	岡山市北区下石井1丁目4-1 岡山第2合同庁舎2F	086-226-0361	https://www.mod.go.jp/pco/okayama/
広島	〒730-0012	広島市中区上八丁堀6-30 広島合同庁舎 4 号館6F	082-221-2957	https://www.mod.go.jp/pco/hiroshima/
山口	〒753-0092	山口市八幡馬場814	083-922-2325	https://www.mod.go.jp/pco/yamaguchi/
徳島	〒770-0941	徳島市万代町3-5 徳島第2地方合同庁舎5F	088-623-2220	https://www.mod.go.jp/pco/tokushima/
香川	〒760-0019	高松市サンポート3-33 高松サンポート合同庁舎南館2F	087-823-9206	https://www.mod.go.jp/pco/kagawa/
愛媛	〒790-0003	松山市三番町8丁目352-1	089-941-8381	https://www.mod.go.jp/pco/ehime/
高知	〒780-0061	高知市栄田町2-2-10 高知よさこい咲都合同庁舎8F	088-822-6128	https://www.mod.go.jp/pco/kochi/
福岡	〒812-0878	福岡市博多区竹丘町1丁目12番	092-584-1881	https://www.mod.go.jp/pco/fukuoka/
佐賀	〒840-0047	佐賀市与賀町2-18	0952-24-2291	https://www.mod.go.jp/pco/saga/
長崎	〒850-0862	長崎市出島町2-25 防衛省合同庁舎2F	095-826-8844	https://www.mod.go.jp/pco/nagasaki/
大分	〒870-0016	大分市新川町2-1-36 大分合同庁舎5F	097-536-6271	https://www.mod.go.jp/pco/oita/
熊本	〒860-0047	熊本市西区春日2丁目10-1 熊本地方合同庁舎B棟3F	096-297-2050	https://www.mod.go.jp/pco/kumamoto/
宮崎	〒880-0901	宮崎市東大淀2丁目1-39	0985-53-2643	https://www.mod.go.jp/pco/miyazaki/
鹿児島	〒890-8541	鹿児島市東郡元町4-1 鹿児島第2地方合同庁舎1F	099-253-8920	https://www.mod.go.jp/pco/kagoshima/
沖縄	〒900-0016	那覇市前島3丁目24-3-1	098-866-5457	https://www.mod.go.jp/pco/okinawa/okinawa1/

防衛大学校受験の勧め

防衛大学校は、日本の防衛を担い、国民の安全・安心を守り抜き、世界平和に貢献することに強い関心があり、また将来、社会を支える重要な組織のリーダーになりたいと考えている受験生の皆さんに開かれた大学です。神奈川県東部横須賀に位置し、東京湾を望み、富士山を仰ぐ自然環境に恵まれた空間にあります。

防衛大学校は、自衛隊のリーダー(陸・海・空の幹部自衛官)を育成する日本で唯一の大学教育機関です。本校は、防衛省の機関ですので「大学校」となっていますが、一般大学と同じ4年制の大学教育を実施し、卒業時には学士の学位が授与されます。一般大学と異なるところもあり、この大学校のミッションが幹部自衛官を育成すること、と明確に規定されていることから、入校する学生も目的意識を持って、日々勉学や訓練に励んでいます。

防衛大学校は毎年約480名(女性100名)を基準に学生を採用しますが、その内訳は、人文社会科学系が約100名、理工学系が約380名です。防衛大学校の教官数は約310名で、学生対教官の割合からみて、全国でも有数の少人数教育が行われていることになります。人文社会科学系には3学科、理工学系には11学科あり、学生は多様な14分野のうちから1学科を専攻します。学生の専攻分野は2学年に進むときに決まりますが、1学年は教養教育科目を重点的に学びます。

本校では制服教官(幹部自衛官)による防衛学の授業があります。戦史や国防論、戦略論など、一般大学では見られない、本校ならではの教育科目です。また、学生舎(寮)では若く元気な自衛官たちが日常生活をともにすることで、先輩として指導にあたっています。現在、このような全寮制かつチューター制で教育を行っている大学というのは、世界でもそれほど数多く存在しない制度であると思います。部活動である校友会も防大教育の重要な柱で、学生全員が体育系の校友会に所属し、学生舎生活と同様にタテとヨコの人間関係に習熟していくことになります。なお、数多くの文化系の校友会もあり、積極的に活動しています。

防衛大学校は、国際化にも非常に力を入れています。4年制大学教育を受けながら、英語力を身に着けることで海外派遣のチャンスも多くあります。また既存の留学制度に加えて、学外及び国外への研修制度を加えることによって、外の世界を見てもらうチャンスを増やそうとしています。キャンパスには留学生が多数おり、また、海外の士官学校生の訪問も頻繁にあることから、国際的な雰囲気に満ちあふれています。そして毎年、国際的視野を広げる目的で、学生たちの自主的な運営により、世界約20カ国から士官候補生を招いた国際会議も開催されています。

以上のように、防衛大学校は、教育の目的は遠大かつ明確で、知性、体力、協調性、国際性、そしてそれらを通じてリーダーとしての人間的資質を身につけることのできるすばらしい学びの場なのです。日本の安全保障に貢献したい、防衛で国民に奉仕したいと考えている皆さん、是非本校の門戸を叩くことを検討していただければ幸いです。

見えない自分が、見えてくる。

■あなたは「自分」が見えていますか?

現代人の多くはそんなことを考えずに過ごしています。考えない方が、流される方が楽に生きていけるからです。でも、本当にそれでいいのですか?「このままで良いのだろうか」と思ったことはありませんか? 防衛大学校では、防衛学や訓練、そして8人部屋での学生生活など、

一般大学にはない四年間が待っています。あえて言いましょう。キツイです。

流されて生きていれば決して経験することのできないリアルな厳しさ。

その中に身を置くことによって、今まで漠然として捉えることのできなかった

自分自身のあるべき姿が発見できるのもまた事実なのです。

「このままじゃいけない」「今の自分を変えたい」…

そんな熱いハートを持った人たちを、防衛大学校は待っています。

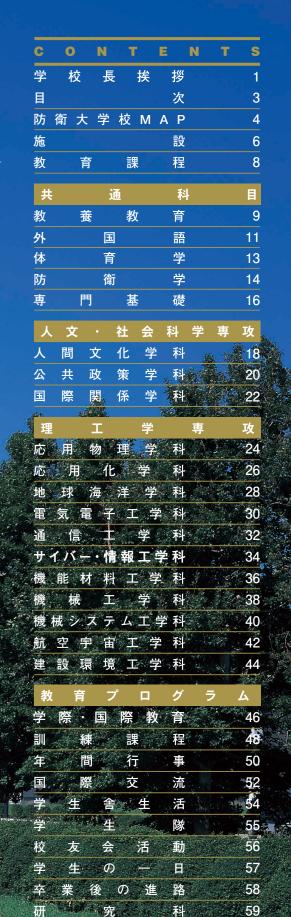
意志ある学びはすべて、 誇りあるリーダーとしての活躍につながる。

将来、陸上・海上・航空各自衛隊の

幹部自衛官となる人材を育成する防衛省の教育機関、防衛大学校。

「広い視野を開き、科学的な思考力を養い、豊かな人間性を培うとともに、

幹部自衛官にふさわしい精神、


体力基盤及び生活習慣を育成すること」を教育目標とし、

充実した学習環境であなたの成長を支えます。

目標に向かい強い意志をもって学ぶことは、

国防はもとより、災害派遣や国際平和協力業務など、

誇れる将来の活躍へとつながるのです。

グローバルセキュリティセンター

防大の沿革

受験生のための防大相談室

防衛大学校オープンキャンパス

60

61

62

64

■豊かな自然に囲まれた環境と、充実した施設の中で自分だけの「やりたいこと」を見つける。

防衛大学校の敷地は広さ約65万平方メートル、東京ドーム約14個分に相当します。 緑に囲まれた教場や学生舎、研究棟、グラウンドなどが整備され、 学生会館、学生舎などからは眼下に東京湾、晴れた日には横浜ベイブリッジや房総半島、 さらには霊峰富士を眺めることもできます。

本部庁舎正門をくぐると、正面には本部庁 **記念講堂**式典や講演等が行われます。 舎が見えます。

理工学館■1~4号館及び教育研究A館があ り、それぞれに教場、実験室、実習室など があって、理工系の教育·研究が行われます。

社会科学館■社会科学系の教育・研究が行わ **防衛学館**■防衛大学校独自のカリキュラム、 れます。

防衛学の教育・研究が行われます。

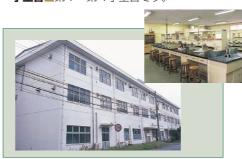
総合体育館■温水プールやトレーニング 室もあり、体育の授業や校友会(クラブ) 活動が行われます。

球技体育館■バレーボール、 バスケットボー ルなど、室内での球技が行われます。バレー ボール2試合とバスケットボール 1 試合が同 時に行える広さです。

武道場■柔道、剣道、空手道、合気道など の武道が行われます。

資料館■教育理念、学校設立背景、卒 業後の進路などを展示し、学生教育及 び学校広報に活用することを目的とし ています。

競技施設■陸上競技場は400m全天候型トラックです。 また、ラグビー場、アメリカンフットボール場、 サッカー場、 硬式野球場、 テニスコート はそれぞれ独立しており、のびのびと授業や校友会 (クラブ) 活動が行えます。



学生舎■第1~第4学生舎です。

土木・化学実験棟■化学実験室や建設環境工 学実験室があります。

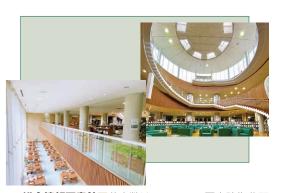
学生食堂■全学生を一度に収容・喫食することが できます。

学生浴場■1階に男子学生(第1~第4浴場 まであります。)、2階に女子学生及び職員用 の浴場があります。

覆道射場■実弾射撃訓練が行われます。

理工学総合実験棟■ A ~ E 棟まであり、大型 の実験装置や実習工場などがあります。

走水海上訓練場■通称「ポンド」。 カッターや機動艇訓練などが行われ ます。



医務室■ケガや病気の治療をはじめ、 学生の健康管理を行います。

利厚生業務を行う厚生課 があり、1FにはコンビニやATMもあります。

総合情報図書館■蔵書数は 60 万冊。軍事防衛分野 の図書は、特に充実しています。また、推薦図書を 展示する等、読書案内にも力を入れています。

■ 個性的なカリキュラムで、新たな自分自身を発見する。

防衛大学校の教育課程は、文部科学省の定める大学設置基準に準拠し、教養教育・外国語・体育・専門基礎の 科目と専門科目(人文・社会科学専攻及び理工学専攻)を一般大学と同じように教育するとともに、本校独自の 防衛学(防衛に関する学術分野)の教育を行います。その他にも国内外の著名人による全校的な課外講演や、 内外の教授による学科単位の特別講義、授業の一環としての施設見学などがあります。本科卒業生には、他の 一般大学と同様に学位(学士)が授与されます。

注: 平成3年度より、学位授与機構(現(独)大学改革支援・学位授与機構)による外部審査を経て、学位(学士)が授与されます。

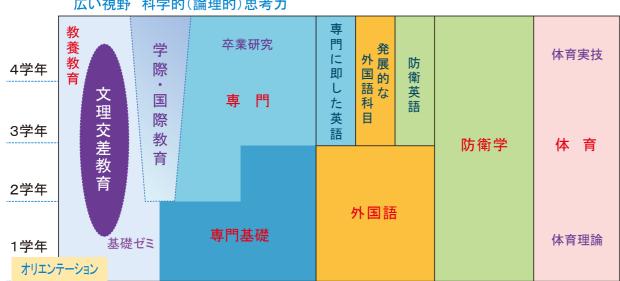
「取得できる学位】

- ■人文・社会科学専攻 学士(人文科学)、学士(社会科学)のいずれか
- ■理工学専攻 学士(理学)、学士(工学)のいずれか

■第1学年

人文・社会科学専攻は専門基礎のすべて、理工学専攻は専門基礎の一部を学びます。また、教養教育、外国語、体育及び防衛学の一部を履修します。 第2学年進級時に人文・社会科学専攻は3、理工学専攻は11の専門学科に区分され、陸上・海上・航空各要員の配分が決定されます。また、理工学 専攻は第2学年で残りの専門基礎を履修します。

※学科区分は本人の希望と成績によって、要員配分は本人の希望と成績、適性によって決定されます。


■第2~4学年

教養教育、外国語、体育、防衛学、専門科目を履修します。

■第4学年

卒業研究論文を作成します。

広い視野 科学的(論理的)思考力

自衛官(社会人)基礎力

						進	殺	及	O	쑤	莱	
					人文・社会	会科学専	攻					
Ü	要	単	位	数	第2学年進級時 35単位以上	第3学年 75単位			年進級時 地位以上	卒 152:	業 時 単位以上	
	教	莨	教	育	3 単位以上	8 単位	以上	18単	位以上	24≧	单位以上	
区分別	外国語	英語 英語以外の外国語 (初晋外国語)		外国語	6 単位以上	12単位	以上	12単	位以上	.上 12単位以 .上 2単位以		
į,	体			育	3 単位	4 単	单位	5 !	単位	6	単位	
· 立	= 00 12 72		礎	18単位以上					18単位以_			
数			門		22単位	边以上	42単	位以上	66≧	单位以上		
	防	衛		学	2 単位以上	6 単位	以上	14単	位以上	24≧	単位以上	

(C	火	安	14		平 '	lπ	銰					
						理工	学専攻					
凼	要	単	位	数	第2学年進 35単位」		第3学年道 75単位」		第4学年 114単位		卒 152	業 時 単位以上
	教	養	教	育	3 単位以	北上	8 単位以	以上	18単位	以上	24 <u>è</u>	单位以上
分別	外国語	英語	以 外 の 外 (初習外国語	語 国語	6 単位以	以上	12単位以	以上	12単位	以上		単位以上単位以上
単	体			育	3 単位	Ż	4 単位	Ϋ	5 単	<u> </u>	(6単位
位	専	門	基	礎	19単位」	以上	30単位」	以上			30≜	单位以上
数	専			門			12単位以	以上	30単位	以上	54 <u>è</u>	单位以上
	防	衛		学	2 単位以	北上	6 単位以	以上	14単位	以上	24È	单位以上

■全学共通基盤教育

良き社会人、職業人となるための偏りのない知識。

General Education

教養教育では、良識に富んだ社会人・職業人(幹部自衛官)となるための教養を 学びます。多様な授業を通じて、柔軟な思考力と豊かな教養をもつバランスの とれた人格形成を目指します。

カリキュラムは、(1)自ら考え、表現する力(基礎的思考力)を養う基礎科目(「基 礎ゼミナール」)、(2)バランスのとれた発想をするための他分野科目群(人社 専攻学生への「数学」「物理学」「化学」などの理工系教育、理工学専攻学生への「思 想と文化」「歴史学」「心理学」「政治学」「経済学」「法学」などの人社系教育)、(3) 豊かで高度な教養のための準専門的科目が設置されています。

				人文	・社会	科学	専攻			
郡	目区:	i)	授		業		科		目	単位数
			基	礎	ゼ	Ξ	ナ	_	ル	1
教		修	数			学			Α	2
養	ūΧ	侍 単	数			学			В	2
教	364	位数	近		現		代		史	2
育	18	13 #	物	理	学	(概	論)	2
		莅丨	化		学		序		論	2
最低修			自	然	科	È	学	実	験	2
	選		地	珂	Ř	٢	3	Ħ	洋	2
得単位数	歌	4	先章	土し	ノク	トロ	ニク	ィスス	門	2
征 数	修	4 単位以上	<u> </u>	ンピ		タ!	ノテ	ラシ	_	2
24 単 位	修得単	以	Х	カラ	イラ	7(機	械。	と社	会)	2
莅	単位	上	飛	行	機と		」ケ	ッ		2
	数		±	オ	_	地	Ŧ	里	学	2

				理	工学	攻			
彩	目区:	i)	授	Ĵ	Ķ	科	1	目	単位数
		修	基	礎 -	ゼミ	ミナ		ル	1
	岖	單 位	近	3	見	H	ť	史	2
	修		憲					法	2
教		塑	玉		ß	学		法	2
養		0	ア		ジ	7	7	史	2
教	選択	2 単 位	欧		H	K		史	2
育	選択必修	垃	地		Ę	₫		学	2
宣		_	/ <u>[</u>)		Ę	₫		学	2
低	修得単位	2 単 位	思	想	لح	=	文	化	2
修得	益	1111	言	語	لح	=	文	化	2
単位	数8単位	1	政		Ä	1		学	2
数	単位	4 単 位	経		7	Š		学	2
[最低修得単位数24単位]		1111	法					学	2
位			玉	際	関 伊	系 請	侖 概	説	2
	ĭ	3	航	空宇	宙	I	学 概	論	2
	1	R	光	・電	波	۲	人	間	2
			土	木	I	学	概	論	2

※授業科目は年度によって変わることがあります。

		人	文・社会科	斗学専 耳	女、理コ	[学専攻	共通	
科目	区分	授	ġ	¥	科	ŀ	目	単位数
		グロ	ーバル	コミュ	ニケー	-ション	入門	1
						ション I		1
		グロ	ーバルコ]]]]	ニケー	ション I	応用	1
		グロ	ーバルコ]ミュ:	ニケー	ションⅡ	基礎	1
		グロ	ーバルコ]ミュ:	ニケー	ションⅡ	応用	1
		グロ	コーバル	J = :	ュニケ	ーショ	ンⅡ	1
		欧	米	5	ė.	研	究	2
		地	理	È	学	研	究	2
		H	本 ·	アミ	ジア	史 研	究	2
		実	験	j	Ĺλ	理	学	2
		カ	ウ	ン †	<u>ا</u> ح	ノン	グ	2
		哲	!	学	石	Я	究	2
		近	代	7	文	学	史	2
教		日	本	文	学	評	論	2
養		漢		7	文		学	2
教		組約	能経営	とリ	ー ダ	ーシャ	ップ	2
育		領	域	[玉	際	法	2
	選	現	代	社	会	٢	法	2
景		地	:	域	石	Ħ	究	2
修	択	戦	争	٢	国	際	法	2
[最低修得単位数		安 (安:	全 全科学。	科 ヒリス	学 クマ:	総 ネジメン	論 ノト)	2
24		太	平洋	戦	争	へ の	道	2
単位		現	代	数:	学 0	D 思	想	2
		ス	ポ ー	ッの		- チ ン	ノグ	2
		武	道史	لح ا	武	道論	考	2
		ス	ポ	_ `:	ツ 打	支 術	論	2
		図		形	乔	<u></u>	学	2
		振	動と	震	動	の世	界	2
		艦	艇	I	学	概	論	2
		航 2	宇宙	セキ	ا ــــــــــــــــــــــــــــــــــــ	J テ ィ	論	2
		火		薬	相	斑	論	2
		分子	生物学	とバ-	イオテ	クノロ	ジー	2
		地	球 惑		科	学 概	論	2
		放	射	線	の	科	学	2
				==	TIT	r/m	т.	

Ε

主な科目とその概要

■基礎ゼミナール(共通)

高校までの受動的学習から、大学での能動的学習の方法論と習慣を身につけることが本科目の第一の目的です。担当教官は自分の専門分野に関係した課題や教材を用意し、学生自らが考えて文献・資料の調査・分析を行ったり、野外調査や実験を実行できるよう助言します。その過程で問題発見能力、解決のための計画立案・実行能力を学んだのち、報告書作成能力、発表資料作成能力、討論力などを高めます。クラス規模は10名程度の少人数として、きめ細かい指導を行うことになっています。

■近現代史(共通)

近代から現代に至る日本及び周辺諸国の歴史を学びます。その中で日本とアジア諸国や欧米諸国との関係や外交についても考察します。戦後においては日本の復興とともに、冷戦下における日本及び周辺国の歴史と外交を学び、自衛隊発足及び防衛大学校設立の過程と日本における自衛隊の役割の変遷を考えます。

■安全科学総論(共通選択)

安全神話から安全科学へ。日常に存在する様々な危険を科学的に分析し、非常事態に際しても危機に至らぬようなシステムを構築することが安全科学の目的です。この科目では、様々な危機的状況を構成要素に分解し、科学技術的な改善や、組織運営のソフト面、運用部門の人的資源(要員の知識・技術力、心身の健康)等の研究の在り方を学び、高学年で展開される安全科学プログラムの出発点に立つことができます。人的要素までが対象となっているのは、非常事態に際し、人を含めた組織やシステムが確実に機能するためには、機材面だけでなく、適切な状況判断を行えるような労働環境も必要となるからです。

■自然科学実験(人社専攻学生対象)

人文・社会科学専攻学生であっても卒業後、最先端の科学技術が投入された機器の運用をしなければなりません。 その際臆することなく対処することができるよう、基礎的な理化学器材の使用に関する知識及び技術を学びます。 また、実体験によりデータの信頼性を評価する習慣を身につけ、データに基づいた自然科学分野の報告書作成方法 を習得することも重要な課題となります。授業では実験のテーマの背景や測定原理等についての説明を行った後、 実験に入ります。

ニトロセルロースの燃焼実験

霧箱を用いたα線の観察

外国語を学び、グローバル化の時代に即応する能力を身につける。

Department of Foreign Languages

外国語

国際社会で活躍するために英語・ドイツ語・フランス語・ロシア語・中国語・朝鮮語・アラビア語及びポルトガル語の教育を行います。

英語は必修で外国人教官による授業やe-learningも取り入れて大学教育における基礎力としてだけでなく、 PKO等海外で活動するのに不可欠な実際に役立つ英語運用能力を養成します。

毎年1回、全学でTOEICを受験し、コミュニケーションのための英語能力を測定します。

英語以外の外国語(初習外国語)についてはいずれか1つを選択して1~3年間学習できます。

主な科目とその概要

■ 英語教育

●第1学年から第4学年を通じた徹底した英語教育

防衛大学校における語学教育は、英語については 4年間を通じて学習し、英語圏に関する幅広い教養とともに実用的な英語運用能力が身につくようなプログラムになっています。特に、第1・2学年では日本人および外国人英語教官による一人一人に目の行き届いたきめ細かい指導を受け、英語の四技能及び基礎的学力を身につけた上で、第3学年以降においては、より実用的な観点から、中級英語、アカデミック・ライティング、時事英語、スピーチ&ディベートの他専門教育に即した専門英語、安全保障や防衛学に関わる軍事英語などの発展的な科目を学び、卒業後世界各地へ飛翔し英語を用いて活躍する備えをします。

また、全学年が毎年TOEICを受験します。 学年毎に基準点が定められており、基準点に達し ない学生は、再試験を受けたり、教養科目で開講 するグローバル・コミュニケーション英語を履修 することが義務付けられますので、自己研鑽をし て卒業時までに一定以上のスコアをとることが必 要です。

●様々な専門分野の教官による授業

外国語教育室には言語学・文学・文化・教育・政治など、様々な分野を研究する教官がそろっています。授業では、単に言語の習得に終始することなく、学生は、各教官の専門と関係する分野の視点から広く深く言語を学ぶことができます。

●ネイティブスピーカーによる授業も

英語で発信できる能力を実践的に磨く演習の場の一つとして、第1学年及び第2学年において週一回、ネイティブスピーカーによる授業を設けています。授業では、身のまわりの様々なテーマが取り上げられ、ペアワーク、スピーチ、プレゼンテーション等のアクティヴィティを通して、英語運用能力を高めていきます。これら実践的な演習を通して身につけた力は、海外からの訪問学生のエスコート、海外士官学校への派遣やICC(国際士官候補生会議)等の機会で発揮されています。

科目	区分	授		業			养	4		目	単位数
	必修	大	学		英		語		基	礎	2
	修修	大	学		英		語		読	解	2
	得単	英	語		表		現		法	I	2
	位数	英	語		表		現		法	Π	2
	位数12単位]	英	i	語		特		請	ŧ.	I	2
	位	英	i	語		特		請	ŧ	П	2
	選	ド	1		ツ		語		初	級	2
	択以	フ	ラ	ン	,	ス	Ī	語	初	級	2
	修		シ		ア		語		初	級	2
	修得	中	-	玉		語		初]	級	2
	星	朝	1	鮮		語		初]	級	2
	数数	ア	ラ	Ľ		ア	Ī	吾	初	級	2
	得単位数2単位	ポ	ル		ガ	J	レ	語	初	級	2
	莅	日				本				語	2
		ド	1	ッツ	,	語	-	†	級	I	1
		ド	イ	ッ		語		-	級	П	1
		ド	イ	ッ	,	語	_	L	級	I	1
		ド	イ	ッ		語		L	級	Π	1
外		フ	ラ	ン	ス	1	語	中	級	I	1
国		フ	ラ	ン	ス	Ī	語	中	級	Π	1
		フ	ラ	ン	ス	1	語	上	級	I	1
語		フ	ラ	ン	ス	-	語	上	級	П	1
最			シ	ア		語	-		級	I	1
仏修			シ	ア	,	語	-		級	Π	1
得単			シ	ア		語		L	級	I	1
[最低修得単位数14単位]			シ	ア	,	語	_	L	級	П	1
蚁 14		中	玉		語		中		級	I	1
里位		中	玉		語		中		級	Π	1
		中	国		語		上		級	I	1
	選	中	玉		語		上		級	Π	1
		朝	鮮		語		中		級	I	1
	択	朝	鮮		語		中		級	П	1
		朝	鮮		語		上		級	I	1
		朝	鮮		語		上		級	Π	1
		ア	ラ	Ľ	ア	Ē	語	中	級	I	1
		ア	ラ	Ľ	ア	Ē	語	中	級	II	1
		ア	ラ	ビ	ア	Ē	語	上	級	I	1
		ア	ラ	ビ	ア	Ē	語	上	級	Π	1
		ポ	ル	ト :	ガ	ル	語	4	級	I	1
		ポ	ル	h :	ガ	ル	語	4	級	I	1
		ポ	ル	h :	ガ	ル	語	1	- 級	I	1
		ポ	ル	ト :	ガ	ル	語	1	級	Π	1
		英		語			?	寅		習	2
		中		級			į	英		語	2
		ア	カデ	ミッ	ク		5 -	イラ	- / C	ノグ	2
		時		事			į	英		語	2
		ス	ピ -	- チ	. &	. 5	ř.	1 '	ベー	-	2

※技業付日は千反により (支わることがめりより。

11

全学共通基盤教育

主な科目とその概要

■初習外国語(ドイツ語・フランス語・ロシ ア語・中国語・朝鮮語・アラビア語・ポ ルトガル語)

第1学年では選択必修科目として、初習外国語 を履修します。ドイツ語・フランス語・ロシア語・中 国語・朝鮮語・アラビア語・ポルトガル語の中から 1科目を選び、「読む」「書く」「聞く」「話す」のバ ランスのとれた基礎学力を養います。他大学では 学ぶ機会の少ないポルトガル語やアラビア語ま で用意されているのが本校の特色です。希望す る学生は第2学年と第3学年以降においても初 習外国語を選択科目として継続履修できる体制 が整えられています。学習目標は、任官後、海外 で諸活動に参加する機会があることを視野に入 れ、それぞれの外国語の基礎的な運用能力を培 うことに置かれます。在学中は、選抜試験を経て 仏、独、中国、韓国、ロシア、カタールなどの士官 学校に派遣される機会があります。派遣学生に 選ばれることを当面の目標にすえて初習外国語 の学習に励む学生も多いようです。初習外国語 の学習にはその他の効用もあります。初習外国 語の学習は、母国語である日本語や初めての外 国語である英語の特徴を再発見するための、得 がたい手がかりとなります。それらの言語との比 較が促されるからです。初習外国語の学習を通 じて、是非、すでに知っている日本語や英語の構 造を新たな目で見る体験をしてください。初習外 国語の学習成果は、第3・4学年時に開講される 「地域研究」に活用できます。また、海外に派遣 される学生(主として第3学年)の選抜に際して、 TOEICのスコアと併せて重要な選考材料になり ます。海外派遣の期間は、短期(1週間~1セメ スター)と長期(約1年間)に分かれます。

初習外国語の学習は第3・4学年時に開講される地域研究につながるとともに、第3学年時に行われる短期(1週間から)、長期(1年間程度)の海外派遣学生の選考にも影響します。この選考には学業成績だけでなくTOEICのスコアも適性を見るための大きな要素として配慮されます。

行動力を支える体力、技能、社会性を身につける。

Department of Physical Education

体育学

体育は、将来幹部自衛官として求められる強靭な体力、運動技能および円満な社会性の養成を目的に行われています。そのため、必修科目として理論と実技の両面から4年間にわたる履修が求められます。

体育理論では、健康で強靭な体力作りとスポーツを実践する上で必要なスポーツ科学の知識を学びます。

体育実技では、第1学年時基礎体力トレーニングを実施します。 第2学年以降は個人、球技、武道種目を履修し、運動技能、円 満な社会性および体力の向上を図ります。科目を専門とする教 官が担当します。

乔	相区	分	授	業		科	目	単位数
体音		理論	体	育		理	論	2
修			体	育	実	技	Ι	1
体育 [修得単位数 6単位]	讴	実	体	育	実	技	Π	1
薮.6.	修	技	体	育	実	技	Ш	1
堂			体	育	実	技	IV	1

体育実技Ⅳ:剣道の授業風景

体力向上パスウェイ

防衛大学校における体力養成は、体力向上 パスウェイにもとづき行われます。 入校時そして毎年秋に実施される体力測 定を通じて、目標到達を目指すと共に自ら

正を通しく、目標到達を目指すと共に目りの体力を正しく認識します。学生各自の体力に対する認識に応えるべく、体力養成 ログラムは、様々な場面で提供されます。体育理論と体育実技では、基礎的運動能力を向上させるとともに基礎体力向上を 習得することができます。訓練では、基礎体力の底上げと自衛官として大きないであるます。また、学生の自主性発揮の場であるを 支会活動では、学生自らが選択した種目を 通じて体力を向上させることができます。また、体力が低位な学生には、各種補習プログラムが用意されています。

防衛大学校では、様々な機会を通じて、自己の体力を向上させることができます。

▶ 防衛大学校体力測定種目 50m 走、立ち幅跳び、ソフトボール投げ、 懸垂(斜懸垂)、1500m 走(1000m 走) ():女子種目

2 NATIONAL DEFENSE ACADE MY ¹

日本で唯一、防衛大学校でしか学べない。

Department of National Defense Studies/Department of Strategic Studies/Department of Leadership and Military History

防衛学

防衛学特論 (航空)

防衛学は、安全保障、防衛、戦争、軍隊及び軍と社会の関係などを研究する学問分野です。

また、人文・社会科学、理工学などの幅広い分野の理論的根拠を基礎とし、それらを応用して実践に結びつける 総合的・学際的な学問でもあります。

主な科目は、「防衛学基礎」「国防論」「軍事史序論」「戦略」「作戦」「軍事と科学技術」「統率」及び「国際情勢と安全 保障」です。他に、少人数のゼミナール形式で安全保障や防衛に関する諸問題を研究する「防衛学特論」も行って います。

これらの科目は、防衛学教育学群の三つの教育室(国防論教育室、戦略教育室、統率・戦史教育室)が担当します。 防衛学は、専攻や陸上・海上・航空各要員に関わりなく全員が履修します。

主な科目とその概要

第1学年

■防衛学基礎I・II

古代から現代に至る世界の主要な戦争について歴史的 に概観しつつ、戦争の本質及びその変遷を理解すると ともに、防衛学における基本的概念や理論等の基礎的 知識を理解することにより、じ後の防衛学を履修する 際の基礎を身に付けます。

防衛学特論 (海上)

軍事と科学技術授業風景

※授業科目は年度によって変わることがあります。

第2学年

■国防論

現代の国防に関する諸問題を理解・考察するための基礎 的知識を学びます。

■軍事史序論

近代以降の日本の軍事史について、国防政策、軍事戦略、 軍事制度、戦争・作戦指導などの視点から考察することに より、事後の研鑽に必要な軍事史的素地を身に付けます。

サイバー、宇宙、電磁波等新領域を含めた各種作戦の 基礎を学びます。

第3~4学年

幹部自衛官として目的達成のために集団の力を結集させ るリーダーシップに関する目標(理想像)と今後修練す べき事項の確立のための素地を身に付けます。

■軍事と科学技術

科学技術の発達が軍事に及ぼしてきた影響、教訓事項など を通じて軍事と科学技術の相互関連性及びその重要性を 学びます。

■戦 略

主要な戦略論の概要及び戦略の基礎理論などを通じて、戦 略の概念及び戦略的なものの見方、考え方を学びます。

■作戦,統合作戦

各種の作戦及び領域横断型の作戦の概要と特質、並び に軍事の意義について学びます。

■国際情勢と安全保障

新たな脅威や多様な事態への対処に必要な最新の知識を 涵養するとともに、分析考察する理論的思考を向上させま す。

■防衛学特論Ⅰ・Ⅱ

自衛官としての実務経験を有する教官による少人数制の ゼミナールであり、安全保障や防衛に関する諸問題を広 い視野をもって実践的かつ多角的に研究します。

第3学年後期、第4学年において上記必修科目で学んだこ とをさらに深く考察できるよう、多様な選択科目を開講 します。

海上作戦授業風景

防衛学特論 (陸上)

防衛学基礎授業風景

Е

全学共通基盤教育

専門学科に耐えうる、確かな基礎学力を身につける。

School of Humanities and Social Sciences / Schools of Science and Engineering

専門基礎

●人文·社会科学専攻

国際的な場における活動が増える幹部自衛官として、

幅広い知識と教養を身につけるために必須となる基礎学力を修得することが目的です。 また、3つの専門分野の導入、紹介という意味もあり、いずれも第1学年で履修しますから、 進むべき専門を選択するための充分な知識の獲得が可能です。

主な科目とその概要

■歴史学

歴史学とはどのような特質をもった学問なのか、どのように発展してきたのか、そして他の諸科学とどのように関わってきたのかなどの原理的・基礎的な事柄について学びます。歴史家が研究の際に行うテーマの設定、文献目録の作成、史料の選択・収集・分析、歴史補助学の利用などについても講義します。

■人間学

本講義では、人間の本質を省察する哲学・倫理学、人類の文化・ 社会的側面を研究する人類学の基礎を学び、「人間とは何か」 についての理解を深めることを目指します。

■政治学基礎

議会、行政、政党、選挙など現代政治学の基本的問題を取り上げ、時事問題にも触れながら幅広く講義します。さらには国内政治と国際政治との相違や、政治と安全保障との関わりについても学び、政治にいかに向き合うかを考究していきます。

■経済学基礎

不景気、デフレ、失業などの「経済現象」を正確に理解・説明する ために経済学と基本原理を、題材を絞って学びます。

■害法

日本国憲法の重要原理である平和主義や基本的人権の意義、 国家統治機構のメカニズムなどについて基礎理論を説明し、時事 問題と関連づけながら今日の憲法問題に対する意識を喚起しま *

■国際法概論

国家や国際機構とは何かより始まり、条約、国家領域、海・空・宇宙、人権保障、紛争処理、安全保障や戦争などに関する規則を 学びます。

何を学ぶ?どう学ぶ?●第 1学年で履修する科目の殆どは言うまでもなく、高等学校までに
勉強したことを基礎として授業が進められますから、受験科目だけではなく、高校での主
要な科目については、すべて学習しておく必要があります。

理工系では、数学Ⅲまでは当然とし、採用試験で化学を選択した学生も物理基礎程度は 履修しておかなければなりません。化学基礎についても同様です。

人文·社会科学専攻の学生についても、専門知識ではありませんが、教養教育の必須科目 として数学、物理、化学があるため数学I·IIなどもよく理解しておいてください。

				文・社会				
丰	区分	授	業		科		目	単位数
		歴		史			学	2
專	必修	人		間			学	2
専門基礎「最低修得単位数18単位」		政	治	学	į	基	礎	2
麓	[修得単位数16単位]	社	会	学	-	基	礎	2
誛 氏	位数	経	済	学	-	基	礎	2
	16	憲					法	2
₹	里位	国	際	法	ŧ	概	論	2
立数	۰	法	学		基		礎	2
8 単		言	語	文	1	化	論	2
立	選択	組	織		管		理	2
	"	国	際	関	係	概	論	2

※授業科目は年度によって変わることがあります。

●理工学専攻

理工系のどの分野に進んでも必要な基礎知識を修得することが目的です。 いずれも高等学校で学ぶ数学、物理、化学が重要な基礎となっており、 第1学年、第2学年にまたがって履修します。また、防衛大学校の特色に鑑み、 学年制を考慮したカリキュラムとなっています。

主な科目とその概要

■数学Ⅰ

行列および行列式の基礎理論について、主に連立 1次方程式を題材として学びます。

■数学Ⅱ

1変数関数の微分および多変数関数の偏微分を学びます。応用として、不定形の極限、1変数関数の増減や極値、2変数関数の極値などを求めます。

■数学Ⅲ

1変数関数の積分および多変数関数の重積分を学びます。応用として、曲線の長さ、面積、体積、曲面積などを求めます。

■理工学入門

1 学年初学期に専門学科に係る様々なトピックスに触れ、基礎学力を向上する機会です。教官の専門を生かしたたくさんのテーマが用意され、高等学校で身につけた能力に応じて学びます。

■物理学

物理学の基礎として、力学的運動が、微分・積分という基本概念から構成されていることを学びます。その際、物体を質量が一点に集中した大きさのない点(質点)の運動として扱います。

■物理学Ⅱ

惑星や人工衛星の運動など、複数の質点にかかわる運動を学びます。さらに、大きさのある物体を、 運動中に質点間の相対位置が変化しない体系(剛体)として捉え、回転運動の効果などを学びます。

■物理学Ⅲ

電磁気的な力を電場や磁場の概念から理解し、 荷電粒子の運動や、電磁場の時間変化によって 生じる典型的な現象について学びます。

■化学 I

原子構造と周期表の関係、さらに分子構造と分光 学との基礎的な関係を学ぶことにより、化学の基礎 に対する理解を深めます。

■化学Ⅱ

化学反応や化学熱力学の基礎について学びます。 さらにその応用として溶液、電気化学、さらには固体 物性に対する理解を深め、化学物質の一般的知識 を広げます。

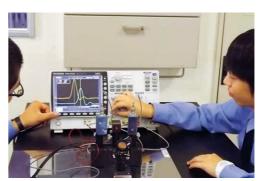
■基礎科学実験

光速の測定、電磁誘導現象、酢酸エチルの合成、 生体構成物質の抽出などの実験を行い、自然科学 現象を観察したり基本的な定数を求めるなどの体 験をします。

■化学実験

アセトアニリドの合成、酵素反応を利用した不斉還元、酸化還元滴定、凝固点降下法による分子量測定、反応速度の測定などの基本的なテーマで化学実験を行い、化学の理解を深めます。

■物理学実験

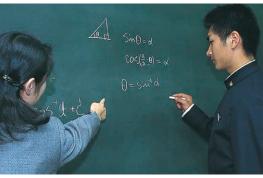

音速の測定、電流がつくる磁場、光のスペクトル分解、放射線吸収などの実験を行い、報告書を作成します。考察する力や報告書を書く力を身につけます。

基礎科学実験(化学分野:酢酸エチルの合成) 合成した酢酸エチルは精製した後、ガスクロマトグラフィーで分析します。

				理工	学専攻		
科目	区分	授	業		科	目	単位数
		数		学	<u></u>	I	2
		数		学	<u> </u>	П	2
		数		学	<u> </u>	Ш	2
		数	学	I	演	習	1
	必	数	学	Π	演	習	1
	修厂	数	学	${\rm I\hspace{1em}I}$	演	習	1
惠	必修 [修得単位数24単位]	理	I	学	ス	門	2
専門基礎 [最低修得単位数30単位]	単位	物	理	₫	学	I	2
礎	数	物	理	₫	学	П	2
最低	単	物	理	₽	学	Ш	2
修得	徑	化		学	<u> </u>	I	2
単		化		学	<u> </u>	П	2
数数		基	礎	科	学	実 験	1
3 <u>0</u>		化	学	:	実	験	11
莅		物	理	学	其	験	1
		数		学	<u> </u>	IV	2
		複	素	関	数	対 論	2
	選	確	率		統	計	2
	択	物	題	₫	学	IV	2
		生	物]	化	学	2
		エン	ノジニア	リン:	グ・メナ	コニクス	2

※授業科目は年度によって変わることがあります。

基礎科学実験(物理分野:光速の測定)



化学実験: 1 学年向けの基礎的な化学実験で す。試薬や器具の使い方も体験的に学びます。

物理学実験:基礎的な物理現象や物理量の測定原理を学ぶ。

数学Ⅲ:多変数関数の基本公式を練習。数学の理論を徹底的に学ぶ。

異文化理解/異文化コミュニケーションで人と人をつなぐ

人間文化学科

近年、国際平和協力活動などで自衛隊が海外に派遣される機会が増えています。さらにわが国の平和と安定を確保するための多国間・二国間の防衛交流も、具体的な行動を伴った協力へと深まりつつあります。このような国際的な実務の最前線は、究極的には固有の文化的背景をもつ人と人がじかに接する場となります。

したがって、そうした現場で活動する幹部自衛官には、各国・地域の文化的特性を理解した上で、文化や宗教の 違いによる摩擦を回避し、効果的なコミュニケーションを行う能力が必要です。

人間文化学科は、わが国の安全保障をめぐるこうした要請に応えるべく、人文科学の諸分野の教育を通して、異文化理解/異文化コミュニケーション能力を育成することを目標としています。

校外研修の風暑

何を学ぶ?どう学ぶ?●人間文化学科では哲学・心理学・世界史・日本史・地理学・文化人類学・言語文化などの人文科学の諸分野を幅広く学び、日本や世界各地域の文化、歴史、宗教などについての基礎的教養、ならびに異文化理解の学問的手法を身につけます。また、本学科の特色として、異文化理解と異文化コミュニケーションの基礎となる語学力の向上を重視していることも挙げられます。学生は第4学年になると、各自の興味にしたがって卒業研究論文を執筆し、論文作成能力と発表の手法を身につけます。学科の授業は少人数のゼミナールが多く、卒業研究の作成に際しても丁寧な個人指導を受けることができます。このように教官と学生の距離が近く、アットホームな雰囲気を持つ本学科で、皆さんも一緒に学びませんか?

卒業研究の授業風景

主な専門科目とその概要

欧米史概論

欧米の歴史を概観し、多様な史資料に触れながら歴史や伝 統が創られていく過程について理解を深めます。

■アジア史概論

国際的な視野を養成するため、特に地域間の相互交流 に光を当てながら、アジア諸地域の歴史に関する基礎 的事項を学んでいきます。

日本史概論

日本史の大きな流れをつかむとともに、グローバルな歴史の なかの日本史を学ぶことで、長期的・俯瞰的視野と国際的 感覚を養います。

■現代史概論

大正期から冷戦期までの日本現代史を概観し、日本の政治 と外交の特質について理解を深めます。

■地域思想論

西洋哲学の伝統に根ざした普遍主義と、それに反発する地域主義との相克として特徴づけられる20世紀以降の現代思想の流れを概観します。

■心理学概論

異文化理解の前提となる、文化的多様性を越えたコミュニケーションの方法や、多様な価値観を理解する能力を心理学的観点から明らかにします。

宗教文化論

イスラームをはじめとする宗教の普遍性や多様性について 幅広い知識を学びます。

■地域文化論

フィールドワークや地図などの人間社会の分析手法を身につけ、場所・環境と文化との関わりや、集団の多様性と共通性など、異文化理解の基礎を学びます。

■異文化コミュニケーション論

異文化間のコミュニケーションにおいて生起する問題 ならびにその解決法を考察していきます。

■英語研究

各国・地域の時事問題や文化に関する英語文献を精読し、 英語で発表し、英語で学術論文を書く手法を学んでいきます。

■古典学概論

「古典」を中心とした日本の言語文化の基礎的事項を学ぶとともに、世界的な視野で分析する能力、および「現在」を相対化する能力を養います。

■日本言語文化論

近代文学や芸術、大衆文化から日本の文化的な本質を学び、 国際交流の前提となる自文化への理解を深めます。

■比較文化概論

日本文化の特性を、東アジア世界との比較や、近代化における欧米文化の受容の観点から学びます。

■人間文化研究I·Ⅱ·Ⅲ

ゼミ形式で文献読解の方法、人文科学の各分野の方法 論、論文作成法、口頭発表の方法を習得します。

■人間関係論

人間関係の諸相とその基礎理論・人間集団の統率の方法 を、心理学の立場から学びます。

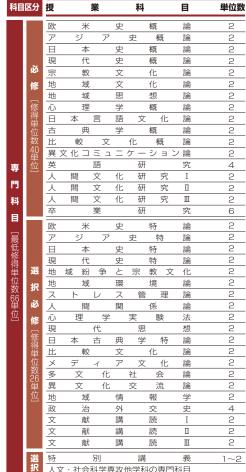
現代思想

欧米の近現代思想の主要潮流を学び、人間文化理解の ための哲学的基礎を解明します。

■地域紛争と宗教文化

摩擦や対立を生み出す宗教のメカニズムを理解するだけでなく、 宗教がもたらしうる融和や調和の可能性について考察します。

■メディア文化論


様々なメディアの誕生と歴史的変遷を総合的に学び、 メディアの本質構造をめぐる文化的な理解を深めます。

海外派遣(上から2枚目、3枚目)

※授業科目は年度によって変わることがあります。

写真:ゼミ風景 (上から1枚目) 課外講演 (上から2枚目)

人文·社会科学専攻 School of Humanities and Social Sciences Department of Public Policy

スパイラルに絡み合う「社会」を、政策という視点で研究する。

公共政策学科

将来の幹部自衛官にとって不可欠な社会全般に対する理解を深めるために、

政策的関心という統一的視点から多様な学問領域の総合をめざして設立された学科です。

当学科では、政治学・経済学・法学などの基礎的学問を修得したうえで、組織論・社会学・安全保障論・危機管理などの、政策形成過程を科学的に分析するための科目を用意しています。さまざまな科学的手法と方法論を学び、現実の具体的な事例に即した分析を目標にしています。

公共政策研究:教官1名に対して学生数名ほどで行われる公共政策研究。少人数クラスで密度の高い授業が受けられる。

何を学ぶ?どう学ぶ?●第2学年および第3学年の「公共政策研究」では、少人数のクラスで論文および書物の読解力、作文能力、発表能力を各人の興味に従ったテーマを選んで徹底的に訓練します。第4学年の卒業研究でその成果を論文にまとめるだけでなく、全員が校内外に公表するための発表会を開催します。

そのため、各人の関心に基づいて主体的に語学力、数理的能力、コンピュータなどによる情報処理能力を磨かなければなりません。さらに、問題提起能力あるいは政策立案・ 企画能力をめざして、教官共々新しい学問分野を確立していく、という意気込みで参加 するように期待します。

主な専門科目とその概要

■公共政策総論

公共政策の効果と評価の手法を習得することで、政 策が国民生活にどのような影響を及ぼすかを学びます。

■政策過程

国際比較をまじえながら、日本国内の政策形成過程 を研究します。

■管理学

組織論的観点から組織のマネジメントや戦略の問題を学びます。

■経済政策

財政政策、金融政策、通商政策を理論的に解説すると共に、具体的なデータを使って経済政策の手段と制度を分析します。

■安全保障法制

日本の憲法と平和・安全法制にかかわる諸問題を、 国際比較の視点から学びます。

■社会調査法

社会調査の方法を、具体的に実習します。事例調査法、自由面接法、生活史法、質問紙調査法などの分析手法を学びます。

■国際経済学

国際貿易の意義や国内経済への影響、輸出入される財の種類、為替レートの変化などについても学びます。

■法学

専門的な刑法、安全保障法などの法学関連科目を 学ぶため、必要な基礎知識を習得します。

■情報社会論

各時代のニューメディアがコミュニケーション体系に 与えた影響について学びます。

■行政法

地方自治法、防衛行政法、行政事件訴訟法、国家賠償法などを解釈しながらその基本構造を学びます。

■日本経済

戦後日本の経済発展を、戦後の復興期、高度経済成長期、オイルショックとその後、バブル経済、90年代長期停滞期と順を追って学びます。

■社会学

社会学の基礎を学んだ後、教育問題や少年非行など、 現実に起こっている社会問題を取り上げます。

■公共マーケティング

公組織における人材募集、対外広報、行事案内など のマーケティングを学びます。

■公共選択

集団的意志決定である公共選択において、公共財の適正供給をいかにして行うかを研究します。

公共政策総論:実例をもとに公共政策の 問題点を学ぶ。

大文・社会科学専攻他学科の専門科目 ※授業科目は年度によって変わることがあります。

海洋環境セキュリティ論

単位数

機管理政策「(日本)

人的資源管理論

機事案研究

政策過程:日本の政策を国 際比較を行いながら学ぶ。

グローバル・スタンダードの安全保障の専門教育が受けられる。

国際関係学科

グローバル化が進む中、国際社会では、政治や外交、安全保障、経済、文化、人の移動、パンデミックなど、様々な問題が重層して絡み合っています。国際関係学科では複雑な国際社会において、日本がどのような立場に置かれているのかを的確に把握するための手法を学びます。そのために国際関係学科のカリキュラムは、国際政治学や比較政治、国際政治史、外交史、国際システム、軍備管理、危機管理といった理論・歴史、国際機構や海洋法などの国際法、7つもの国・地域にまたがる地域研究の3つの科目群から構成されています。このような充実したカリキュラムの下で、国際関係学科は将来の幹部自衛官になる学生諸君に、実り多い安全保障の専門教育の場を提供します。

現代地域研究Ⅶ:南アジアの政治、外交、安全保障について理解を深める。「未来の大国」インドの実像を語る教官の話に、学生たちも真剣に聞き入る。

何を学ぶ?どう学ぶ?● 国際化・グローバル化が進む現在、国際情勢の動向を的確に捉え、国際社会における日本の位置や役割を理解することは、これからますます重要になってきます。特に幹部自衛官は国の防衛に備わるとともに、国連平和維持活動(PKO)への参加など国際平和を推進するための知識と能力が求められています。国際関係学科はこのような幅広い分野で活躍できる将来の幹部自衛官を育成することを目指しています。「平和や安全とは何か」「なぜ紛争や危機が起きるのか」「国際関係はどうあるべきか」といった問題意識を持つ学生を歓迎します。また、国際関係学科では、危機管理プログラム(47ページ参照)も履修することができます。

国際政治史:スターリン、チャーチル、ローズベルトのような歴史 的人物になりきって解説を加えることで、ときに笑いを誘いながら、 歴史の現代的意味を一緒に考える。

主な専門科目とその概要

理論·歴史

国際政治学

国際社会の特徴、平和や紛争の構造など、国際政治を学ぶために必要な基礎的な概念や理論を身につけます。

■国際政治史

近代国家の成立から冷戦の終結まで、ヨーロッパを 中心とした国際政治の歴史を学びます。

■政治外交史

近代から現代までの日本の対外関係を、国際環境の変化にどう対応したかという視点から概観します。

■軍備管理論

核兵器や生物化学兵器、小火器など軍備管理と軍縮をめぐる諸問題を、基礎から応用まで学びます。

国際法

国際法

国家の基本的権利や義務、国家の領域、武力紛争(戦争)法など国際法のさまざまな分野を、国家の安全保障の観点から分析します。

■国際機構論

国連や地域機構などの国際機構を取り上げながら、国際機構の歴史と組織、国際法上の権利や義務、国際機構のさまざまな活動について学びます。

地域研究

■現代地域研究 Ⅰ~Ⅷ

アメリカ・ロシア・中国・東アジア・中東・朝鮮半島・南アジアについて、それぞれの国・地域の安全保障環境や日本との関係等を、歴史・政治・外交・経済・社会・宗教・文化など様々な観点から学びます。

■危機事案研究Ⅱ

対立するインドとパキスタンのこれまでの核戦争の危機 を事例として、核保有国間で抑止のメカニズムがどのような条件で機能するのかを考察します。

演習科目

■国際関係研究

少人数によるゼミ形式で国際関係に関する特定のテーマを掘り下げて学ぶことで、国際関係論の研究方法を 身につけます。

卒業研究発表会: 自国のイスラム反乱への対策 について発表するフィリピンからの留学生。

盽	区分	授			業		科			目	単位数
		玉		際		政		治	ì	学	4
		玉		際		政		治	ì	史	4
	滋	玉				際				法	4
	修	政		治	外		交		-	史	4
		現	代		地	域	研	Ŧ	究	I	2
	[修得単位数40単位]	現	代		地	域	研	Ŧ	究	\mathbb{I}	2
	巣	軍	備		管		珥	1	論	2	
	数数	危	機	リ	ス	ク	管	珥	原	論	2
	40 単	危	機	管	理	政	策	Ι	(日	本)	2
	位	国	際		関	係	研	Ŧ	究	I	4
		国	際		関	係	研	Ŧ	究	I	4
		卒			業		研	Ŧ		究	6
		安	全		保	障	K	ζ	策	論	2
専		海		洋		法		栶	₹	論	2
"		国		際		機		槓	}	論	2
1	選択	危	機		事	案	研	Ŧ	究	I	2
		危	機		事	案	研	Ŧ	究	\mathbb{I}	2
=		比			較		B	ζ		治	2
		危	機	管	理	政	策	Π	(中	東)	2
修得		危	機	管	理	政	策	\blacksquare	(欧	州)	2
「最低修得単位数66単位		危	機	管	理	政	策	IV	(米	州)	2
数	驳	国		対	関		係		特	論	2
36 単	修	現	代		地	域			究	\blacksquare	2
位	修	現	代		地	域	研	Ŧ	究	IV	2
	.修得单位数26单位	現	代		地	域	研	Ŧ	究	V	2
	益	現	代		地	域	研	Ŧ	究	VI	2
	致 26	現	代		地	域	研	Ŧ	究	VII	2
	単位	国	際		シ	ス	ラ	_	L	論	2
	些	科		学		۲		偷	À	理	2
		意		思		決		淀		論	2
		災		害		組		縋	È	論	2
		情	報		٢	意	思	Ę	決	定	2
		社		숲		調		查	Ī	法	2
		危	栫	幾	管		理		特	論	2
		海	洋耳	睘 ‡	見 セ	+	ユ	リ	ティ	論	2
	選	特			別		請	_		義	1~2
	択	人	文・社	<u> </u>	科学專	享攻 (也学科	斗 の	専門	科目	

※授業科目は年度によって変わることがあります。

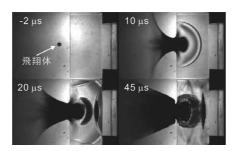
国際関係研究:5~6人のセミ。複雑な中東をめぐる国際関係について、央語又献を輪読し、活発な議論を通じて専門的な知識を身につけます。

理工学専攻 Schools of Science and Engineering
Department of Applied Physics

進化し続ける発明(工学)を学び、発見(理学)のよろこびを見い出す。

応用物理学科は、自然法則と技術的発明との橋渡しを担っている学科です。

自衛隊組織のゼネラリストである幹部自衛官の中でも、科学技術の幅広い基礎知識に基づいた論理的思考力と応用力を身 につけた「真のゼネラリスト」の育成を目指しています。


技術は常に進化を続け、単なる知識など数年を経ずに色あせていきます。だからこそ、科学技術の根底にある自然現象の理 解が「真のゼネラリスト」に求められる素養なのです。そのために、理論計算、原子核、放射線、固体物理学、高速弾道、電子 回路、生体人間情報までの幅広い分野で活躍する多数の教授陣による少数教育を行っています。

応用物理学科では、自然法則の発見(理学)から技術的発明(工学)まで知的体系を極めるよろこびを、学生と分かち合え る教育研究を行っています。

大型の2段式超高速衝突実験装置。微小隕石や宇宙デブリを模擬した飛翔体を超高速で打ち出し、対象物に衝突させて損傷・破壊状態を評価する実験(右下写真)を行っている 様子。(高速弾道学研究室)

何を学ぶ?どう学ぶ?●少人数教育を心がけ、実験と演習を多く取り入れ、教員と学生 とのふれあいを大切にしています。大学教育ですから、ある程度高度な結果が求めら れますが、応用数学、力学、熱力学、電磁気学、量子力学、統計力学、連続体力学などの 基礎的な内容から徐々に積み上げ、さらに回路論、弾塑性力学、物質科学、量子物理 学、光科学、プラズマ工学、原子核物理学へと発展させて、最終的に専門分野の高度な 知識や最新の技術を学べるようにカリキュラムを組んでいます。

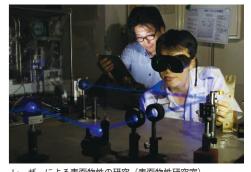
ポリカーボネート球が秒速 6km でポリカーボネートブ ロックに衝突した時の超高速度撮影画像(高速弾道学

微量放射性物質を検知するための放射性検出器 (放射線防護研究室)

卒業研究ゼミ(素粒子物理研究室)

生体細胞の培養と染色を行っている学生 (応用数理生理学研究室)

試作半導体チップをプローブ電極へ正確に置く 操作(雷子同路研究室)


電子顕微鏡による機能性セラミックスの観察 (因体物理研究会)

							• •			
		応		用			数		学	2
		力							学	2
		熱			7	<u></u>			学	2
	必	電		磁			気		学	2
	修	量		子			力		学	2
	修	統		計			力		学	2
	得出	連	;	続	1	本	カ		学	2
	莅	応	用	物	Ŧ	里	学	ゼ	Ξ	4
	[修得単位数28単位]	応	用	物	理	学	演	習	I	1
	単位	心	用	物	理		演	習	П	1
		応	用	物	理	学	実	験	I	1
		応	用	物	理	学	実	験	П	1
ı		卒		業			研		究	6
		応	用		情	報	· ·	Л	理	2
ı	選				į.	各			論	2
	択	応	用	物	理	学	演	習	Ш	1
	必	応	用	物	理	学	演	習	IV	1
1		弾	1	塑	1	±	カ		学	2
	修 [修得単位数10単位]	量	子		#	勿	理		学	2
		物	質		Ŧ	4	学		I	2
	単位	物	質		科		学		П	2
	数	原	子		核	物	3	里	学	2
1	単	先	端	科	学	技	術	概	論	2
i	位	プ	ラ		ズ	7		I	学	2
		光			Ŧ	斗			学	2
		人	間		情	報		I	学	2
		電	子		情	報		I	学	2
		相	3	対	1	±	理		論	2
		バ	1	オ	Х	カ	=	ク	ス	2
	選	計算	章 機:	シミ	ュし	<i>)</i> —	ショ	ン≉	半学	2
	-	高	j	速	3	単	道		学	2
	択	放	ļ	射	- 4	泉	計		測	2
		放	射	線			管	理	学	2
		超			f				導	2
			用			理		料	学	2
		特		別			講		義	1~2
Lett.	ME TA 1	A		L			7 1. 1			

単位数

目

※授業科目は年度によって変わることがあります。

レーザーによる表面物性の研究(表面物性研究室)

(脳情報処理研究室)

主な専門科目とその概要

■人間情報工学

人間の視覚や脳のメカニズムなどに関する基礎知 識から、自衛隊装備としても導入されつつあるV Rや3D映像、脳機能計測といった応用技術まで 幅広く学びます。

電子情報工学

半導体素子の動作原理、通信・情報技術に欠かせ ないアナログ・ディジタル回路について学び、近 年のエレクトロニクス産業の発展を支える電子情 報工学に関する幅広い知識を取得します。

■相対性理論

光速や質量などへの素朴な疑問から出発して、時 空の対称性および重力に関するアインシュタイン の理論を基礎から学んでいきます。宇宙の進化を 支配する数式にふれることができます。

バイオメカニクス

バイオメカニクスは生体力学という意味です。普 段使っている私達の体がどのような仕組みで動い ているか、ということを力学的な視点から学ぶこ とができる授業です。

■計算機シミュレーション科学

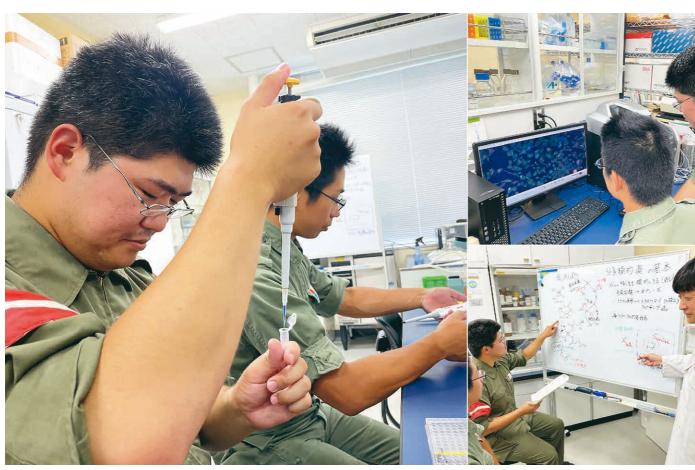
理論、実験に次いで、第3の科学と言われているコン ピュータ・シミュレーションは、自然現象の解明から 装備品開発などの工学分野まで広く使われています。 その基礎原理から応用までを学びます。

■高速弾道学

輝きながら高速で夜空を横切る流れ星の隕石が大 気中を飛行するときや地面に落下してクレーター を作り出すときに起きる現象はロケットや弾丸に も生じるもので、そのうちの基本的な現象を学び ます。

■放射線計測

放射線の性質と検出手段、そして放射線防護につ いて学びます。原子力災害対応はもちろん、航空 機や特殊車両の内部欠陥検査など、自衛隊の部隊 活動に有益な放射線利用の知識を習得できます。


超伝導

超伝導の発見から100年が経ちました。MRI は超伝導磁石に置き換わり、リニア中央新幹線は 2027年の開業を目指しています。この授業では科 学の発展における超伝導の歴史、超伝導現象、高 温超伝導そして応用を学びます。

化学を総合的に学び、社会に貢献できる人材を育成する。

応用化学科

化学は物質の結合、反応、物性などを探求し理解する学問であり、目的に合った特性、機能を持つ物質を創造する学問です。 応用化学科では、無機化学、有機化学、物理化学、分析化学などの基礎的な教育分野と、反応化学、燃料化学、火薬学、生物化学などの応用面の教育研究分野を網羅しています。したがって、材料・資源から環境・生命、さらには防災・減災までの一貫した知識体系が構築され、自然や化学への興味を深めるだけでなく、化学に関連した事象への対応力が培われます。応用化学科での3年間は、合理的な思考に基づいた正確な判断力・実行力を身につけた自衛官の育成に結びつきます。応用化学科は、理工学系学生に共通した基礎教育を担う伝統的な学科ですが、常に先端科学を見据えて研究領域を拡充し、新しい分野に挑戦する学科でもあります。 応用化学科ホームページ:https://www.nda.ac.jp/cc/chem/

卒業研究:微生物や培養細胞を用いて、その DNA・タンパク質についての基礎実験を行っています。教官の指導の下、得られたデータについてディスカッションをします。

何を学ぶ?どう学ぶ?●応用化学科には、応用無機化学、応用有機化学、応用物理化学、 応用分析化学、高分子化学、反応化学、燃料化学、火薬学、生物化学、細胞分子生物学、 ゲノム生物学の11教育分野があります。

各分野に共通した基礎的な知識から、応用・発展的な内容への理解が深まるように、各講義・演習科目を体系的に配置しています。各教育分野が有機的に連動することにより、専門的な知識をさらに深めていくことができます。第4学年の卒業研究は、11の教育分野からテーマを選んで、教官のマンツーマン指導を受けることができます。選んだテーマに基づき、1年かけて実験・議論を繰り返し、卒業論文を完成させます。

卒業研究: ラマン分光法を用いて、タンパク質などの 生体分子を含む様々な物質の構造や相互作用を分析し ます。

主な専門科目とその概要

■無機化学

各元素の性質と化学を周期律表を基に講義。原子構造、 化学結合、量子力学についても学びます。

■有機化学

有機化合物の諸特性と反応性に関する系統的な理解を促すための講義を行います。

■物理化学

物質を構成する原子や分子が集合して存在している場合を様々な熱力学関数をもとに解釈して、平衡論についての理解を深めるとともに、物質の変化を取り扱う上での 基礎知識を得ます。

■分析化学

溶解、分離、濃縮、元素の化学状態の分析について、また、 その理論的基礎となる溶液内化学平衡の概念、溶液内 化学反応の特徴、各種化学平衡とその分析化学への 応用について学びます。

■応用無機化学

遷移元素(d電子及びf電子元素)、電子不足結合、混合原子価化合物、錯体、無機溶液化学、機能性無機材料についての講義を行います。

■応用有機化学

有機化学の基礎を反応論と構造論から正しく理解する ことが目的。官能基別に講義を進め、複雑に見える有機 化合物の性質や反応がどのような法則のもとに理解さ れるのかを講述します。

■応用物理化学

量子力学と分光学により原子構造、分子構造及び化学 結合について講義します。

■高分子化学 I

繊維やプラスチックの素材である汎用高分子から高性能・ 高機能高分子にいたるまで高分子素材の合成法及び 成形法を明らかにします。

■反応化学

反応速度定数について経験則から統計論的アプローチまでの 広い範囲を講義するとともに、物質移動等の化学工学の初歩 に触れることにより化学反応の基礎と応用の橋渡しも試みます。

■燃料化学

化石燃料の将来やその有効利用について環境問題と関連して学習。その有効利用については燃料電池の種類 や構造、実現性などについても考えていきます。

■火薬学 I

黒色火薬、産業用爆薬、高性能爆薬、ロケット用推進 薬などの火薬類の性能及び試験法、発破などの基礎知 識とともに、燃焼と爆轟の違いについて学びます。

■生命化学 I

細胞の構造をはじめ、糖質、アミノ酸、脂質など生命維持 に必要な化学物質の構造、性質について学びます。 さら にたんぱく質、酵素、核酸などについても講義します。

■細胞生物学

生きた細胞内で起っている出来事(成長、合成、分解、 分裂等)について学習します。さらに植物や微生物などを 用いたバイオテクノロジー技術についても講義します。

■化学演習・応用化学ゼミ

1学年、2学年で学ぶ化学の基礎的な事項や、3学年、 4学年で学ぶより高度かつ専門的な内容に関してそれぞれ演習問題を解きつつ化学全般についての理解を深めます。

コンピュータ化学の授業

応用化学実験:

- 上)酸一塩基の中和滴定実験 中)アルコールの脱水反応
- 下) X 線による結晶構造の解析

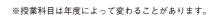
命システム解析学

防災の化学

物

議

義


27

バイオセキュリティ**-** 概論

理工学専攻他学科の専門科目

資 源 環 境 分 析 高性能高分子の耐久性の化学 単位数

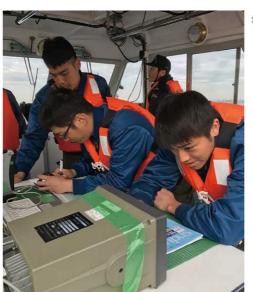
目

火薬の燃焼実験

授業風景: それぞれの科目のシラバスに沿って、講義が進められます。シラバスは学科ホームページから見ることができます。

「地球」を学び、自分の小ささを知る。

地球海洋学科


私たちが住む惑星地球について教育研究することが目的です。総合的な視野に立ち、 地球環境を理解できる人材を育成するために、地球惑星の自然現象について基礎と専門教育を行います。 教育研究分野としては、大気の運動について知る大気科学、航空管制のための航空気象、 地球内部と地震を理解するための固体地球科学、宇宙や地球惑星を調査する宇宙惑星リモートセンシング、 音波伝搬により海洋構造を調べる海洋音響学、海洋の熱、氷、運動量を追跡する海洋探知情報、 海中音波の探知方式に関する海洋探知システムなどがあります。

地球海洋学実験Ⅰ(高層気象観測):バルーンを上げて上空の温度、湿度、気圧などを計測。気象学の基礎を理解する。

何を学ぶ?どう学ぶ?●第2学年では地球海洋学の基礎的な授業、第3学年では様々な分野の授業、第4学年では自由にテーマを選んで卒業研究が行われます。台風、ダウンバースト、航空気象、気象レーダ観測、都市の温暖化、海氷、海流、エルニーニョ、地震、マントル対流、銀河、太陽、宇宙天気、水中音響探知システム、海洋音響トモグラフィーなどの研究が行われています。卒業研究は興味のあるテーマをもとに観測や実験・解析・理論を通して教官と議論しながらまとめていきます。

主な専門科目とその概要

■気象学概論

太陽放射、大気大循環、大気に働く力、気圧と風、 水蒸気と雲、温帯低気圧と台風、気団と前線など、 地球を取り巻く大気中で起る様々な現象について 基礎的な知識を学びます。

■航空気象学

航空機の運用に関する気象現象、例えば、低層 ウィンドシアや、晴天乱気流などについて学びます。

■地圏環境科学

岩石圏、気圏、水圏を含む地圏における地球内部 構造などの基礎的な知識と、3圏の相互作用につ いて学びます。

■天文学

我々の活動する地球という天体に関して、宇宙物理学的観点からその存在意義を探ります。さらに、地球が宇宙空間においてどのような存在環境にあるのかを、太陽物理学及び宇宙学的観点から実証的に学びます。

■海洋学

地球表面の70パーセントを占める海洋について、海水の働き、水温と塩分の分布、海洋の熱収支、海洋の循環、波と潮汐など全般的な知識を学びます。

■海洋音響計測

海洋音響に関する基礎と応用、例えば、波動方程式、 水中音波の反射と透過、海洋音響トモグラフィーな どについて学びます。

■観測地球物理学

地球上における地震・火山などの自然災害と地球 環境の観測のための知識と、観測結果からわかる 地震や環境問題について学びます。

■海洋探知工学

水中音波の基礎理論を学び、水中音波による水中物体探知に関する知識を学びます。

■リモートセンシング

大気・海洋・地球表層を観測するためのリモートセンシングについて、その原理、可視光・赤外・マイクロ波の各リモートセンシングの基礎を学びます。

※授業科目は年度によって変わることがあります。

地球海洋学実験Ⅱ (地震学): 地震計を使っての観測。

地球海洋学実験Ⅱ(海洋学): 機動艇を使用した海洋観測実験。

科目区分 授

21世紀を支えるエレクトロニクスを学ぶ。

電気電子工学

電子を自由に繰り応用する技術であるエレクトロニクスは私たちの生活をますます豊かにしています。 近い将来到来するユビキタスネットワーク社会においてもその根幹を支える重要な技術となっています。 電気電子工学科では、エレクトロニクスの基礎から最先端の応用まで一貫して教育を行い、 エレクトロニクスの知識を応用して21世紀の防衛システムの構築に貢献できる幹部自衛官の 育成に力を注いでいます。

卒業研究(量子電子工学研究室):紫外レーザーを用いた物質表面の官能基操作に関する実験

何を学ぶ?どう学ぶ?● 第2学年では、エレクトロニクスの基礎を学びます。特に電 気磁気学と電気回路は、授業と並行して演習に取り組むごとにより、確実に理解で きるようになります。第3学年では、電子回路、電子物性、電気機器、制御工学といっ た電気電子の専門科目に加え、コンピュータや無線機器といった関連科目も学びま す。また、実験を通じ、実際の物に触れて知識を確認します。第4学年時の卒業研 究では、電気基礎学、電気機器学、電子制御工学、量子電子工学、電子物理学、 電子デバイス工学、電気情報工学および電子計測学の幅広い専門分野の中からテー マを自由に選び、教官と1対1でエレクトロニクスの最先端の研究を進めます。また、 指定した科目の単位を取得することで、第1級陸上特殊無線技士や第3級海上特殊 無線技士の資格を得ることができます。

主な専門科目とその概要

■電気磁気学 |・||

べクトル解析、静電界、静磁界、電磁誘導、電磁波 について学びます。

■電気回路 |・||

交流回路現象、各種回路網の解析と合成の基礎 理論について学びます。

■電気数学

フーリエ解析・変換とラプラス変換による信号の周 波数スペクトル解析法、線形システムの過度現象と 周波数特性の解析法を学びます。

■電子理論

真空、気体および固体中での電子の基本的振る舞 いについて学びます。

■電気計測

電子式計測器の構成・基礎動作原理とそれらの使 用方法、各種応用計測法について学びます。

■電子物性

物質の性質を決定する固体中の電子の振る舞いに ついて、量子論の基礎、結晶構造、格子振動と比熱、 固体のエネルギー帯理論に分けてわかりやすく学び ます。

■制御工学 I・II

ロボットに使われているモーターの位置制御系が構 成できるようになることを目標に、自動制御の基礎を なすフィードバック制御系の設計や解析法について 古典制御論と現代制御論の立場から学びます。

■電子回路 I・II

ダイオードやトランジスタの動作原理と回路表現なら びにこれを利用した増幅・発振・変調回路について 学びます。

■電気機器

変圧器、直流機、誘導機、同期機などの電気機器の 基礎理論と各機器の特性、ならびにパワーエレクトロ ニクスの基礎を学びます。

■電気エネルギー工学

エネルギーの基本形態、エネルギー変換、電気エネ ルギーの発生のしくみ、電気エネルギーの貯蔵方法、 電気エネルギーの輸送方法を学びます。

■コンピュータ基礎・数値計算法

コンピュータの動作原理と情報処理のしくみ、ならび にコンピュータを用いた数値計算法を学びます。

■固体電子工学

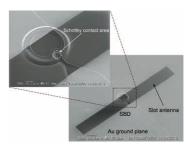
固体物理の基礎、半導体の帯理論、接合論、半導 体電子効果について学びます。

■光エレクトロニクス

光を電気・電子的に制御するための学問。特にレー ザの原理とその応用について学びます。

■電子デバイス

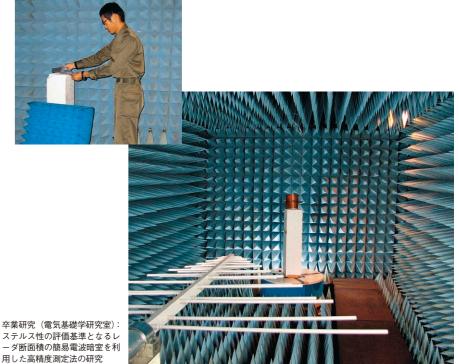
電子デバイスとして半導体デバイスや誘電体 デバイスを取り上げ、それらの基本原理と応 用例を学びます。


■電波工学

電波の発生、放射、伝搬などの基礎知識と無線通 信における実用例について学びます。

■無線機器

アナログ・ディジタル無線機器の動作原理と 回路構成を学びます。



卒業研究(電子物理学研究室): クリーンル - ム内で行われる高感度電磁波検出素子の 製作に関する研究

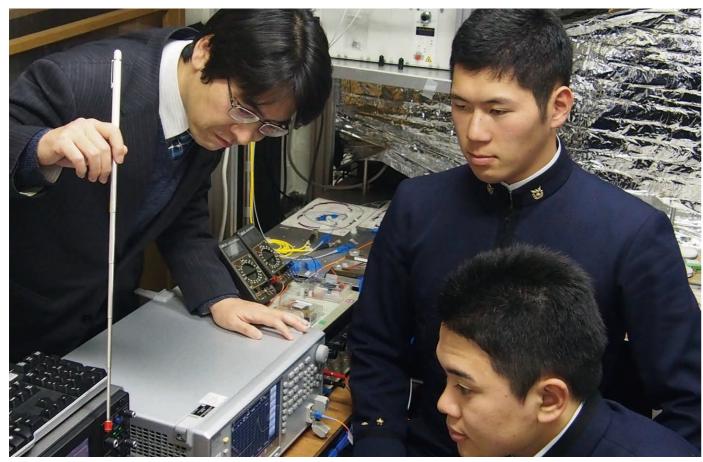
		電	気	磁	気	,	学	I	2
		電	気	磁	気			П	2
		電	気	Ē		路		I	2
	巫	電	気	Ī		路		П	2
	修	電		気		数		学	2
		電		子		理		論	2
	修得	電		気		計		測	2
	単位	電	気	磁 気	学	演	習	I	1
	[修得単位数69単位]	電	気	磁 気	学	演	習	Π	1
	単	電	気		路	演	習	I	1
	位	電	気		路	演	習	Π	1
		電	気	電	子	実	験	I	1
専		電	気	電	子	実	験	Π	1
		卒		業		研		究	6
門		\Box	ン	Ľ ı	_	タ	基	礎	2
科	選択	電		子		物		性	2
目		固	体	電			I	学	2
霊	必修	電	子	デ) (1	ス	2
低		制	徂]	I	学	!	I	2
得	修得	制	徂]	I	学	!	П	2
里位	単位	電	子	-		路	i	I	2
[最低修得単位数54単	[修得単位数14単位	電	子	-	回	路		П	2
巢	単	電		気		機		器	2
莅	但	電	気エ	ネ	ル =	ド ー	· I	学	2
		無		線		機		器	2
		電	気	電子	英	語	演	習	2
		電		電子		語	ゼ	Ξ	2
		数	値	1	計	算		法	2
		シ	ス	テ	L		I	学	2
	選	光	エレ	ク	 	_ =	ク	ス	2
		気	体 工	レク	7		- ク	ス	2
	択	電		波		I		学	2
		通	信	シ	ス		テ	Δ	2
		電			波			法	2
		特		別		講		義	1~2
		理	工学専	攻他	学 科	の専	門科	目	

単位数

※授業科目は年度によって変わることがあります。

用した高精度測定法の研究

D Ε 人と未来にコミュニケーション。


通信工学科

情報通信工学の基礎的・専門的教育を通じて、現状を分析し

データを総合して的確な判断を下す、といった分析や判断ができるようになることが目標です。

さらには無線通信、衛星通信、光通信、インターネット、携帯電話、携帯端末などにより、地球上の出来事を

多くの人々が瞬時に知ったり、また送ったりできるという双方向の通信や、航空機や船舶に利用されている電波を応用したレーダや航行援助装置などの通信装置や、電波応用機器についても専門的知識を修得できるよう教育します。 なお、通信工学科を卒業すると、無線・通信関係の国家試験でさまざまな特典が得られます。

卒業研究(光通信工学講座):光ファイバーを用いた高密度情報信号の生成実験。現在の高度な通信ネットワークの根幹を支える光通信技術を学ぶ。

何を学ぶ?どう学ぶ?●電磁気学や電子回路理論等の通信工学の基礎学問にはじまって、コンピュータによる情報処理、IP(インターネット・プロトコル)技術、無線通信や光情報通信ネットワークといった応用分野まで幅広く学ぶことができます。

第4学年の卒業研究では、高出力レーザや電波暗室などの最新鋭の研究設備を使用した最先端の研究(例えば、GHz帯電波吸収体、陸上・海上での電波伝搬、レーダを用いた信号処理技術、マイクロ波・ミリ波通信、プラズマ波伝搬、アンテナ技術、全光変調・光多重分離通信、フォトニクスデバイス、光ファイバセンサなどに関する研究)を教官と議論しながら行うことができます。なお、通信工学科の特定の科目を履修することによって、第1級陸上特殊無線技術士の免許取得、及び電気通信主任技術者・第1級陸上無線技術士等の国家資格試験受験科目の一部が免除となる資格が得られます。

主な専門科目とその概要

■诵信材料

半導体を中心に誘電体、磁性体材料、及びインターネットの基幹を支える光通信、世界中を結ぶ衛星通信、携帯電話、無線LAN等の無線通信など、これらの様々な通信技術を用いた通信用デバイスについて学びます。また、通信材料の研究開発についても学びます。

■電波工学

電波がどのようにして空気中に放射され、空気中を伝わり、受信者のところまで届くのかについて学びます。

■光通信工学

光による情報伝達の原理、光システムを構成する半 導体レーザ、光ファイバ、光増幅器などの構成要素、 具体的な光通信システムへの応用例について、基 本的な事項を学びます。

■レーダ工学

電波を発射しその反射波を受信することで航空機、船舶、ミサイルなどの目標物体を検出する装置であるレーダの講義。ハード、ソフト両面からレーダの仕組みについて学びます。

■诵信工学

音声、画像、データ等の情報源が通信の信号として どのように取り扱われるか、また、それらの信号波の解析法として、フーリエ級数やフーリエ変換を学んだ後、 実際の通信で用いられるアナログ、デジタル変調方 式や多重方式などの伝送方式および通信網について勉強します。

■電気通信数学

通信工学で必要とされるベクトル解析、複素関数、フーリエ級数等について学びます。

■通信ネットワークⅠ・Ⅱ

伝送技術、交換技術、光ファイバ伝送技術、無線通信技術等に関する基礎知識とインターネットを実現している情報通信ネットワークの仕組みについて学びます。

■ディジタル信号処理

ディジタル信号処理の素子はDSPという名前のICとして多くの電子機器、例えばCD、MDプレーヤーや携帯電話に組み込まれています。このような身近な話題から授業を進めます。

■通信計測

各種測定器やセンサの基本的な動作原理とその使用法を学び、電磁気量等を正確に測定し、正しく評価する能力を養います。

■電子回路

CD、DVD、パソコン、携帯電話等の情報をディジタル信号に変えることや処理をおこなうための基礎的な回路を学びます。

■コンピュータ工学

情報理論やディジタル回路などのコンピュータ工学の基礎知識を習得するとともに、ディジタル信号処理、ディジタル情報の伝送や圧縮などの情報通信ネットワーク技術の基本的な事項について学びます。

■通信工学実験

通信工学の基礎を養うことを目的として、各種電子 回路の基本的な実験から、「アンテナの製作と特性 測定」や「AM受信機の組立および性能評価」等の ようなユニークな実験も行います。

卒業研究(レーダ信号処理工学講座):電子 海図情報表示装置による観測実験

卒業研究 (通信ネットワーク研究室):ネットワーク型遠隔制御の通信品質測定

※授業科目は年度によって変わることがあります。

理工学専攻他学科の専門科目

選択必修科目:通信工学の応用科目を学び、卒業研究等の理解につなげる。

The state of the s

情報化社会の仕組みを科学する。

情報は私たちの利用可能な資源です。様々な手段や装置により入手した情報を整理して、「使える情報」へと加工し ます。サイバー・情報工学科では、情報の収集から整理・蓄積、ネットワークを利用した交換までを、最新の技術 や考え方を利用して、より速く、少ない時間で、また少ない資源で実現することを研究しています。コンピュータ や様々なセンサ、ネットワークを使って、情報関連分野について、基盤となる数学やアルゴリズム、プログラミン グからロボットやネットワークなどの最新技術まで広範な学習が可能です。

情報工学実験Ⅰ:再構成可能素子(CPLD)によるプログラミングとハードウェア(IO)の制御の実習。実験では学生への個別指導が行なわれる。

何を学ぶ?どう学ぶ?

- ●第2学年ではコンピュータの基礎、つまり、「コンピュー タとはなにか?」から学びます。コンピュータの構成、プロ グラムがどのように処理されるか、また、プログラミング言 語であるC言語を学習します。
- ●第3学年ではサイバーコースと情報基盤コースに分かれ、 アルゴリズム論や数値解析、セキュリティ等について学習し、 コンピュータや情報セキュリティ問題を解決する能力を高め ます。
- ●第4学年では第3学年までに学んだ知識と各自の興味に基 づいてテーマを絞り、卒業研究を行ないます。

主な専門科目とその概要

■コンピュータアーキテクチャ

計算機システムの構成・動作原理、及びアセ ンブラプログラミングの基礎を修得します。 ■プログラミング言語

アプリケーションを開発するために必要なプ ログラミング言語の基礎を学びます。

時代を切り開くデザインの規範とするべく、 生命が生み出す豊かな情報システムを学びま

■オペレーションズ・リサーチ

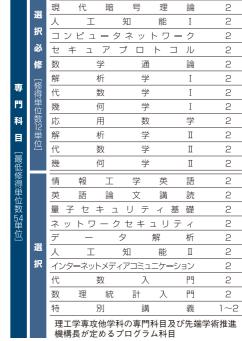
数理モデルや IT ツールを用いて様々な意思決 定問題を解くための科学的手法を学びます。

■人工知能Ⅰ・Ⅱ

人間、組織、社会の知能はどこから生まれ、ど のような形で存在するのかについて学びま

■情報セキュリティ概論

コンピュータシステムや大切な情報を保護す るためのセキュリティ関連技術を学びます。

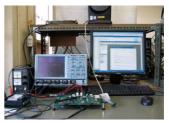

■インターネットメディアコミュニケーション

ネットを媒介としたコミュニケーションの特 性を、さまざまな事例を通して理解します。

■数学通論

専門の数学を学ぶための基礎となる数学の基本 概念を習得します。

サイバー・情報工学科では、数学を専門とする 数学教育のスタッフの指導のもとで専門の数学 を学び、数学に関する卒業研究を選択すること ができます。



サイバーコース

		1	ナイバー	3 -	ス、情	報基型	ミコース	共通	
科目	区分	授		業		科		目	単位数
		電		子				路	2
		情	報	I	学 基	礎	演	習	1
		基	礎ア	ノレ	ゴ	リフ	ズム	論	2
		\Box	ンピュ	- :	タアー	+ =	テクチ	ヤ	2
		情		報		数		学	2
	讴	情		報		理		論	2
	修	符		号		理		論	2
		論	理	1	設	Ē	Ħ	学	2
	修得	プ	ログ	5	=	ン :	グ 言	語	2
	単位	数		値		計		算	2
	数	情	報セ	+	ュリ	テ	イ 概	論	2
	[修得単位数34単位]	才	ペレー	- テ	ィン	グシ	ノス テ	Δ	2
	位	情	報	I	学	演	習	Ι	1
		情	報	I	学	演	習	Π	1
		情	報	I	学	演	習	Ш	1
		情	報	I	学	実	験	Ι	1
		情	報	I	学	実	験	П	1
		卒		業		研		究	6

			<u>쑤</u>		未	-		1	卅		Ť	ĭ		6
					1	情報	基盤	_	ース					
位数	科目	区分	授	¥		Ė		科			目			単位数
2			計		匪	1		¥ 3	数		H	₫		2
2		188	\Box		ン		パ		1	′	=	5		2
2		選	オ	ブジェ	ク	ト指	向フ	ĵ]グ	ラミ	ンク	ブ		2
2		択	ア	ルゴ	リ:	ズノ	ے د	テ		タカ	茀 迨	Ė		2
2		必	デ	_	5	7	<u>~"</u>	-	_	ス	ĒĒ	n		2
2		修	数		学	ź		ì	Ĭ		ĒŔ	n n		2
2		屉	解		析	Ť		Ė	学		I			2
2	専	修得単位	代		数	Į		学			I	I		2
2	門	里位	幾	何			学				I			2
2	科	数	応]	数			当	ź		2		
2	B	数12単位	解		析			学			Ι	Ι		2
2		也	代		数	Į		Ė	学		Ι	Ι		2
	[最低修得単位数54単位]		幾		但	J		è	Ž		Ι	Ι		2
2	修得		情	報		I	ś	学		英	ii	5		2
2	単位		英	語		論	-	文		講	訪	ŧ		2
2	数		×	デ	1	ア	愇	Ī	報	処	理	₽		2
2	⁵⁴ 単		地	理		情	4	報		処	理	₽		2
2	位		オ	ペレ・	— š	ンヨ	ン	ズ	· IJ	サ・	ー チ	=		2
2		選	ソ	フ	\vdash	ウ	I		ア	I	学	ź		2
2		択	計	算	機	言	記	i	設	計	ĒŔ	À		2
2			代		数	Į		,	λ		P	9		2
2			数	理		統	Ī	Ħ		入	P	9		2
~2			特		別	IJ		Ē	講		郭	Ē		1~2
進				工学専 構長が							び先	- 端	学術	推進

※授業科目は年度によって変わることがあります。

卒業研究:暗号装置や自律ロボ ットカー、画像解析等研究対象

電算機講義室で実施 される授業も多い。

材料と共に生きる

機能材料工学科

物質に優れた性質が見いだされ、我々が利用する時、その物質は材料と呼ばれます。

機能材料工学科は、材料の特徴ある性質を実験と理論から知り、利用しようとする分野を系統的に学習することのできる学科です。総合的な観点から材料を理解し、先端的応用研究まで対処できる人材を育成するため、材料設計、材料創製、材料評価、金属材料、電子材料、機能材料の六つの分野で教育を行っています。材料を制する者が科学技術を制するという気概で教育・研究を行っています。

卒業研究(材料創製研究室):各種合金を作製し、衝撃圧縮の変形機構について研究しています。

何を学ぶ?どう学ぶ?●物質を構成する原子やイオン、分子というミクロの構造、さらに粒子の集合体としてのマクロの性質から、物質について本質的な理解ができるように講義が行われます。

第4学年の卒業研究では、圧力・電気変換材料、光・電気変換材料、無機薄膜や有機単分子膜の機能の追求、軽量で高強度や機能を有する複合材料の研究、耐熱温度3000℃の炭素材料の研究、高温焼成や超高圧衝撃処理による新化合物の探索、航空機材料として名高いジュラルミンの経年変化、核融合炉材料や金属結晶の研究などについて、学生は自由にテーマを選び、教官とマンツーマンで研究を進めます。

材料の基礎的な性質の理解と解明、さらに先端的な材料の知識や応用研究を通して"材料を見る確かな目"が養われます。

固体電子物性:物質中の電子の振る舞いに関する基礎的な知識 を受びます

主な専門科目とその概要

■機能材料工学概論

専門分野の導入科目として、実用材料の機能と特性 について学びます。身の回りのいろいろな機器がど のような材料で構成されているのかを体験的に学 びます。

■基礎電磁気学

電気の本質を理解するために、主に静電界について 基本法則を学びます。

■基礎電気回路

材料の電気的性質を評価するために、直流回路や交流回路の具体例を挙げて電気回路の基礎を学びます。

■固体電子物性

電子物性に関する導電現象、誘電的性質、磁気的性質などの基礎知識について学びます。

■材料熱力学

熱と仕事のエネルギーに関する基本法則から、物質 合成に必要な化学反応や相変化まで系統的に学び ます。

■材料物理学

固体の結晶構造やミクロな原子間の結合状態の特徴を学び、マクロな電気的・磁気的特性を学習します。また、結晶内の電子の振る舞いと絶縁体・半導体・金属の関係を学びます。

■電気化学

低エネルギー社会や循環型社会を実現するための バッテリーや触媒反応の開発が進んでいます。デバ イス化に必要な電気化学の基礎を学びます。

■材料力学

種々の用途に使われる材料の変位や変形について 学びます。

■材料評価学

各種材料の特性の評価法および原理について学び ます。

■結晶工学

原子配列の対称性や固体の結晶構造を理解し、結晶 による回折現象の基礎を学びます。

■種々の材料学

エネルギー変換材料、光機能材料、電子材料、エコマテリアルについて、基礎から応用まで幅広く学びます。人類が直面しているエネルギーや環境問題に対応するために、太陽電池、ナノテクノロジー、環境対応材料などに関する最先端の材料科学について学びます。

機能材料工学実験:材料の電気的性質の根本となる概念や法則を実験を通して学びます。

機能材料工学実験:金属の電気化学的特性を測定します。

科目区分		授		業		科		目	単位数
		基	礎	電	磁	3	₹	学	2
		基	礎	電 磁	気	学	演	習	1
		機	能	才 料	I	学	概	論	2
	必	材	料	熱	カ	<u>e</u>	学	I	2
	修	材	料	物	理	ē	学	I	2
		材	料		化	学		I	2
	[修得単位数3]単位]	材		料		数		学	2
	単位	材	料	エ 学	の	最	前	線	2
	数	固	体	電	子	物	性	I	2
	31	材	料		評	価		学	2
	位	材	料	英	語	Ē	講	読	4
専		機	能材	料	工 学	実	験	I	1
		機	能材	料	工 学	実	験	П	1
門		卒		業		研		究	6
科		基	礎	電	気	[路	2
目		材	料	熱	力	ě	学	Π	2
副	選択必修 [修得単位数10単位]	材	料	物	理	Ē.	学	Π	2
[最低修得単位数54単位]		材	料		化	学		Π	2
得	[修	電		気		化		学	2
単位	得当	結		晶		I		学	2
数	益	固	体	電	子	物	性	Π	2
麗	10	機		器		分		析	2
巴	単位	表	界		面	科		学	2
		光			物			性	2
		材		料		力		学	2
		安	全		٢	材		料	2
		電		子		材		料	2
		I	ネル	ギ	一 変	換	材	料	2
	選	光	機	;	能	材		料	2
	. —	材	料	プ		セ	ス	学	2
	択	工		マ	テ	リ	ア	ル	2
		材	料	科	学	Ĭ	英	語	2
		特		別		講		義	1~2
		理	工学専	攻他	学科	の専	門科	4 目	
		<i>.</i>							

※授業科目は年度によって変わることがあります。

基礎電気回路の講義

N A I I O N A L DEFENSE A CADEWIT

家電製品からロボットまで「ものづくり」を学ぶ。

機械工学科

機械工学は、身の回りにある家電製品をはじめ、生活に欠かせない自動車などの工業製品から人と動物の動きを模擬するロボット、宇宙探査のためのロケットやローバまで、あらゆる機械を生み出す「ものづくり」の学問です。

熱、流体、材料、機械運動など機械工学の基礎となる力学科目から、機械の制御、新材料の創成、加工の技術、ロボットの設計など先端の題材を扱った科目まで、基礎と応用を体系的につないで学ぶことで、知的想像力に富み、合理的で柔軟な思考力を持つ人材の育成を目指します。

卒業研究(自動車工学実験室):計測車両で収集したデータを解析してタイヤの力学的特性を明らかにする。

何を学ぶ?どう学ぶ?● 1.機械工学の基礎となる「4つの力学」

機械を動かすための動力の発生原理を学ぶ「熱力学」、流体の性質や動力としての活用を学ぶ「流体力学」、壊れない機械に必要な材料の強さを学ぶ「材料力学」、機械の動きの性質を学ぶ「機械力学」、これら4つの「力学」を通して、「ものづくり」に必要な機械工学の基礎を修得します。

2. 機械の性能を向上させる技術

機械を効率よく動かすための制御技術やコンピュータの活用術、電子工学や人間工学の融合により複雑な機械の動きを可能にするメカトロニクスや生体機械工学、強度に優れた機械の材料を創り出す機械材料学、精度よく効率的に部品を製作するための加工学などを実例に即した教育や演習を通して学びます。

3. 「ものづくり」の実践

モノの構想を具体化するのに必要な「設計と製図」を演習し、材料を加工して実際のモノを作る「基礎機械実習」の体験を通して、「ものづくり」の構想から製造までの過程や加工技術を学びます。

4. 機械工学の総仕上に

卒業研究では、それまでに修得した機械工学に関する知識・技術を使って、学生が選んだテーマを教官の指導を受けながら研究することで、未知の問題を自ら解決する能力を養います。

卒業研究(熱工学実験室): 熱線流速計を用いた平板 乱流境界層の速度計測。

主な専門科目とその概要

■執力学

熱エネルギーと動力との関係を学習し、応用としてガ ソリンエンジンなどの熱機関の原理を修得します。

■流体力学

流体の物理的性質を理解し、空中、水中を推進する 原理を学び、流体からエネルギーを取り出す原理を 学びます。

■材料力学

材料の強さと変形に対する考え方を学び、構造物や機械を設計する技術者としての基礎知識を養います。

■機械力学

機械とこれらを構成する要素および部材の振動現象を解析的かつ物理的にとらえる能力を養います。

■機械材料

機械材料の基礎知識について、代表的な金属やセラミックスから新素材やナノマテリアルまで幅広く修得します。

■制御工学

動的システムの基礎概念について、フィードバック系を中心に周波数領域での取り扱い方を修得します。

■自動車工学

エンジン特性や走行性能および振動と乗り心地から 操縦安定性までの基礎知識を習得します。

■精密加工

工業製品の表面を高精度に仕上げる切削、研削、研磨に関する精密加工の基礎知識を学び、加工のメカニズムや加工現象について修得します。

■メカトロニクス

ロボットアームを思い通りに動かすために必要 なモータ制御の知識や動作の作り方について学 習します。

■システム制御

実システムで実際に利用されている、システム 制御技術の基礎的な概念について学びます。

■生体機械工学

人の動作の仕組み、生命維持、生物の動きについて、機械力学、機構学、材料力学、流体力学などの観点から、工学としてとらえて理解します。

■機械設計製図

基礎科目で学んだ知識を駆使して設計計算を行い、 コンピュータによって設計図面に表現します。概念図、 組立図、部品図と「ものづくり」 現場を仮想体験します。

■機械工学実験

座学の知識およびその関連性を深めるとともに、各 教科の実際の現象や各種機械の性能評価、測定 機器の取扱い方、データ整理法などを体験します。

■コンピュータ演習

コンピュータの基礎知識について学び、それを動か すソフトウエアの仕組みやプログラミングの技法を 演習を通じて修得します。

■機械工学創造実習

これまでに学んだ知識を活用して、設計から製作、試験まで「ものづくり」の一連の過程を実体験で学びます。

卒業研究(強度設計実験室):冷凍室内に設置した自作の衝撃変形試験装置で低温材料強度特性を 調べる。

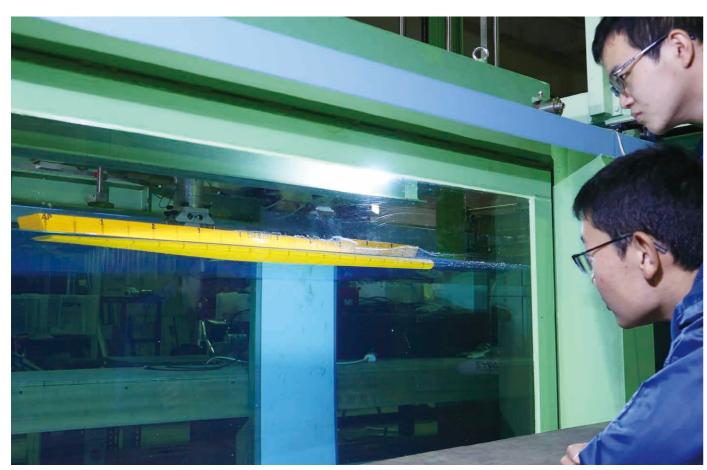
卒業研究(機械力学実験室):衝撃緩衝装置の実験

卒業研究 (機械材料実験室):超高圧 PAS (Plasma Activated Sintering) 装置を用いたセラミック粉 末の完全緻密化実験。

卒業研究(計測制御実験室): VR ゴーグルを利用 した3人称視点による射的技能(ダーツ)実験。

単位数

※授業科目は年度によって変わることがあります。


メカトロニクス:小型人型ロボットを動かしたり分解したりして、その構造を理解する。

NATIONAL DEFENSE A CAD

機械システムを学び、最新の装備品を使いこなす。

機械システム工学科

機械システム工学科では、幹部自衛官として最新の装備品を運用し、また、将来装備品の開発に携わることができる知識・技術的判断力と柔軟な発想を育てることを教育目標としています。このため本学科では、力学、制御、熱エネルギー、流体、材料、加工、船舶・海洋など機械工学の基礎知識を授けるとともに、実験、演習、実習を重視し、設計製図や卒業研究を通じて最新のロボット、コンピュータ応用技術やエンジンなどの機械システムに関する理論と応用について教育し、これを統合・体系化できる能力を養成します。

卒業研究(船舶工学講座):高速回流水槽を用いた模型船の実験

何を学ぶ?どう学ぶ?

基礎学問として、①熱力学、流体力学、材料力学、機械力学の4力学、②制御工学と機械運動学、③機械材料と機械工作法、④コンピュータによる解析及び設計、等について学ぶとともに、工作実習や実験を通じ、実際に物に触れて「知識を確認」します。

また、学生の興味に基づく選択によって、®ガソリンエンジンやガスタービンなどの原理と構造、®流体機器及び油圧制御システム、⑦ロボット・メカトロニクス、®先端材料とその創成法及び精密加工技術、®海洋構造物や艦艇に関する流体構造力学等の教育を受けることが出来ます。

卒業研究では研究科の学生と一緒に最新の研究課題に取り組み、技術的諸問題の解 決法と研究成果をまとめ、発表する力を養います。

ロボットアームのPID制御実験。

主な専門科目とその概要

■熱力学

熱機関における動力の発生メカニズムを理解する上で必要となる原理、法則、現象を学びます。また、実際の熱機関や冷凍機の基本動作に関する知識を修得します。

■流体力学

流体に関する力学を学習することによって、流体機械や機械システムの内部および外部の流れを理解できるよう指導します。

■機械力学

機械の振動を中心とした動的問題を把握するため の知識、解析能力を付与します。

■制御工学

制御工学の基礎知識について、制御系の解析・設計からロボットや装備品への応用まで幅広く修得します。

■材料力学

自動車や船などの構造物や機械の設計の基本となる弾性はりの力学を中心に学びます。

■工業材料

金属材料についての基礎知識を学ぶとともに、炭素 鋼について金属組織と機械的性質との関連をいく つかの具体例を挙げて議論します。

■機械工作

「物作り」の中心課題の一つである、機械工作の理 論と実際について分かりやすく教育します。

■内燃機関

内燃機関の作動原理、構造、性能、改善等を学び、 ものと基礎学問のつながり、エンジンの作動メカニズム、燃焼とエンジン性能の関係などを実機を用いて 学びます。

■船舶工学

浮体静水力学、復原・動揺性能、船型学および船体構造のそれぞれについての知識を習得することを目標とします。

■海上安全運用学

海上装備品の運用(操縦)に必要な知識と原理を学び、 高い海技能力を養います。

■ロボット・メカトロニクス

ロボット工学の基礎知識について、ロボットの機構、制御から最先端の知能ロボットまで幅広く修得します。

■コンピュータ応用解析

C言語及びmathematicaを用いてプログラミングの考え方を身につけ、あわせて数値計算のための手法を学ぶことを目標とします。

■機械システム実験・演習

実験を通して、習得した各教科の実際の現象、測定 機器の使い方、測定精度、データの整理法等につ いて理解を深めます。

卒業研究 (熱エネルギー工学):卒業後の実務に役立つことを目的に、エンジンなどの実機を用いた実験教育を行っています。

機械システム工作実習:設計図面どおりの 形状・寸法に加工し、組み立てて製品にま とめる工程を実際に体験します。

設計・試作・評価を総合的に体験する創成型実験の様子、紙製の船を試作しています。

		流体	力 学	I	2
		材 料	力 学	I	2
	凼	工業	力	学	2
	修	機械シ		I	1
		熱	カ	学	2
	修得	機 楜	力	学	2
	単位	ものづく!	つと機械要素	殳 計	2
	数	制御		学	2
	[修得单位数24単位]	機械シ	ス テ ム 演 習	П	1
	倥	機 掃	製製	図	1
		機械シス	テム実験・身	習	1
		卒 業	研	究	6
		工業	数	学	2
専		工業		料	2
門	選	流 体	力 学	П	2
科		材 料	力 学	П	2
•	択	船舶	ı I	学	2
目	巫	内燃		関	2
最	修	機械	運動	学	2
低修	修	コンピュ			2
得出	得単	海 上 安		学	2
盂	位数	艦艇		学	2
致 54	[修得単位数14単	メカト		ス	2
[最低修得単位数54単位]	虚		ットエ	学	2
۳		メカト		学	2
		機 棚		作	2
		機 械 シ ス	、テム設計製	型 図	1
		流体	機	械	2
		メカト			1
			ザイン演	習	1
		ガス	タ ー ビ	ン	2
	選	精 密		I	2
	択	艦艇	工 学 特	論	2
	"		(工学と装備開		2
			講義	П	1
			機械・機械システ		2
			機械・機械システ		2
		埋工学専攻	他学科の専門を	科 目	

単位数

※授業科目は年度によって変わることがあります。

空と宇宙を飛ぶための知識とシミュレーション。

空宇宙工学

航空工学の基礎学問を十分修得し、加えて宇宙工学関連科目等を学びます。

大気圏内外を飛行する航空機、飛翔体、ロケット等を対象とした9学問分野を展開、

それぞれの分野における基礎的学理を系統的な講義、実験、演習プログラムにより教育します。

航空機や人工衛星のような宇宙機等に関連した極限環境における諸問題を発見して、

これらを創造的に解決する能力を養い、将来の航空宇宙技術の発展に

十分対応できる柔軟性を持つ者を育成することを目的としています。

卒業研究(フライトシミュレータ実験室):T-4 練習機のフライトシミュレータ。急激に旋回すれば機体が破損するシミュレーションもプログラムされている。

何を学ぶ?どう学ぶ?●航空宇宙工学は多くの学問分野を有機的に統合して、航空機、 ロケット等の飛行のためのシステムをまとめ上げることを明確な目的とした分野で

このため航空宇宙工学科では、空気力学、航空原動機学、航空機力学、ヘリコプタ工学、 飛行制御、航空機構造力学、宇宙航行、推進工学、航空宇宙工学設計の9分野を展開し

これら各分野の学理を十分に理解できるよう、各分野とも基礎的な科目・技術の講義 から始まるようになっています。

そして、最終的には各学問分野が飛行のためのシステムを構成する上で果たしている 役割や各学問分野間の相互の関連が理解できるように、系統的な講義、実験、演習プロ グラムのもとで学習します。

卒業研究(宇宙航行研究室):人工衛星や航空機の軌道 を理解する。

主な専門科目とその概要

■基礎空気力学

航空機に関係した空気など流体の流れと物体に 作用する力の基礎的な部分を扱う学問です。

■航空熱力学

燃料の燃焼で発生する熱エネルギーによって生まれ る動力や推進力の仕組みについて学びます。

■航空材料力学

飛行機の構造を外力によって伸びや曲げを生じる弾 性的な棒や梁とみなし、これらの内部に生じる力の分 布、外力と変形との関係、強度、剛性や安全性など の考え方の基礎を勉強します。

■空気力学 I

基礎空気力学で学んだ空気の流れに関する基礎知 識を基にし、翼などが空気の流れからどのような力を 受けるのかということや理論的に性能を求める方法 について講義します。

■航空宇宙エンジン序論

航空用および宇宙用のエンジンについて熱力学 の視点から作動原理を学びます。

■航空機構造力学

飛行中に受ける荷重やそれに耐えるための飛行機 の構造様式について学びます。また、材料力学で習 った棒や梁を組み合わせた骨組み構造の基礎も勉 強します。

■航空機力学

航空機の飛行に必要な基礎理論や飛行に関する 原理および現象とともに、航空機がより良く飛行する ために必要な安定性、操縦性、性能等の基本的な 概念について学びます。

■高速空気力学

空気の圧縮性の概念、高速機まわりにできる衝撃波、 膨張波の構造や性質に対する基礎知識等とともに、 どのようにすれば理想的な高速飛行状態を作り上げ られるかということを学びます。

■宇宙航行理論

宇宙船・人工衛星・宇宙ステーションの軌道などを 実際的に分かりやすく、宇宙工学の基礎知識として 楽しく学びます。

■航空制御工学 I

航空機や宇宙機への応用を考えながら制御工学の 基礎を学びます。

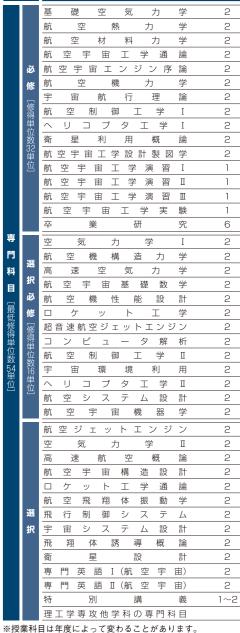
■ヘリコプタエ学 I

ヘリコプタとはどんな航空機なのかを、ロータの空気 力学を重点に飛行機と対比しながら理解し、飛行原 理や性能計算法の基礎を学びます。

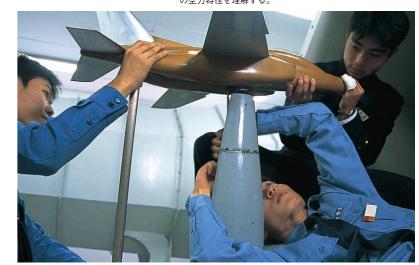
■ロケット工学

ロケットエンジンがどのような原理で動くのか、どのよ うな仕組みで成り立っているのかを学びます。

■航空システム設計、宇宙システム設計


航空機や宇宙機の機体設計や運用方法を学びま

リコプタ・ロータの力学や流れの様子を 飛行特性測定装置により理解する。 (下) 卒業研究 (構造力学実験室):宇宙 機に用いる展開アンテナ構造を理解する。



ンジンの燃焼の様子を理解する。

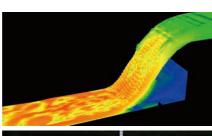
単位数

卒業研究(低速風洞実験室):ゲッチンゲン風洞で、航空機 の空力特性を理解する。

災害から社会を守り、人々の生活を豊かにする学問

建設環境工学科では、種々の公共施設の計画・設計・建設・管理を通じて、より良い生活環境を実現するための 「地球を造形する総合工学」を学びます。地球を造形するには、工学技術はもちろん、地形・地質・気象・海象 などの自然現象の理解、そこに暮らす人々や地球環境への配慮が必要です。さらに、多くの他分野の専門家の 参加・協力を求めながら、プロジェクト全体を統率していくリーダーシップも求められます。

建設環境工学科では、基礎科目から応用科目までを段階的・体系的に展開し、研ぎ澄まされた専門知識・技能と、 ゼネラリストとしての柔軟な思考能力の双方にバランスの取れた人材の育成を目標としています。



土質・水理実験:人工的に波を発生させ、水や土砂基盤の性質や運動を理解する。

何を学ぶ?どう学ぶ?●道路、橋梁、港湾などの建設や国土·都市計画に関する理論お よび実際を学習する土木工学と、自然災害から人命を守る防災工学や、社会生活に関 わる環境工学に関する幅広い教育を行います。

すなわち、構造物と土と水と環境問題のすべてに関連する総合工学の教育を通して、 自然と調和した豊かな社会生活を確保するための知識と技術を学びます。

21世紀の自衛隊は、特に災害派遣や国際平和協力活動等においても大きな貢献が期待 されていますので、そんな場面で活躍できる人材の育成を重視しています。

水理学:堤防を越える流れの性質を理解する。

鋼構造学:構造物の作用荷重を計測する。

主な専門科目とその概要

■構造力学

弾性体の応力と変形の関係、力の釣合いなど、構造 物の設計に必要な力学の基礎を学びます。

水を利用し、また水の災害から生命や財産を守るた めに、水の性質や運動を理解します。

■土質力学

土の物理・化学的性質、分類法、地盤の強度、土中 の水の流れ等を扱います。

■コンクリート材料工学、鉄筋コンクリート工学 コンクリートの材料特性を把握し、さらにコンクリート 構造物の設計法を修得します。

■鎦構诰学

規模の大きな構造物、複雑な構造物等に用いられ る鋼構造の特徴と、その設計法について理解を深め ます。

■建設施工学

切土盛土、コンクリート工事などの基本的な施工法、 建設用機械の性能、工程管理手法を学びます。

■振動・耐震工学

地震、風、波浪等の動的な荷重による構造物の振動、 および地震に耐える構造設計法を学習します。

■大規模災害概論

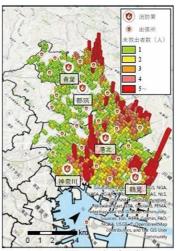
地震・台風・豪雨・火山等の自然災害のハザードを理 解し、自然災害を受ける社会及び社会システムの被 害特性について修得します。

■海岸工学、河川工学

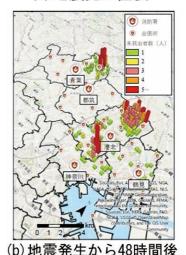
海岸および河川において、水によって与えられる便 益と被害、ならびに影響・作用について学習します。

■大規模災害対処計画論

大規模災害に効率的に対処できるように平時の国土 計画及び危機管理計画に関する知識を修得します。


■交诵工学

道路と社会の関わり、道路線形と舗装の設計法など を学びます。


■環境地盤工学

降水、地下水等の自然水を含めた地盤の環境問題 に関する基礎知識を習得します。

水質、大気汚染等に対する生活環境の保全・改 善方法(上・下水道)に関する基礎知識を習得 します。

(a) 地震発生直後

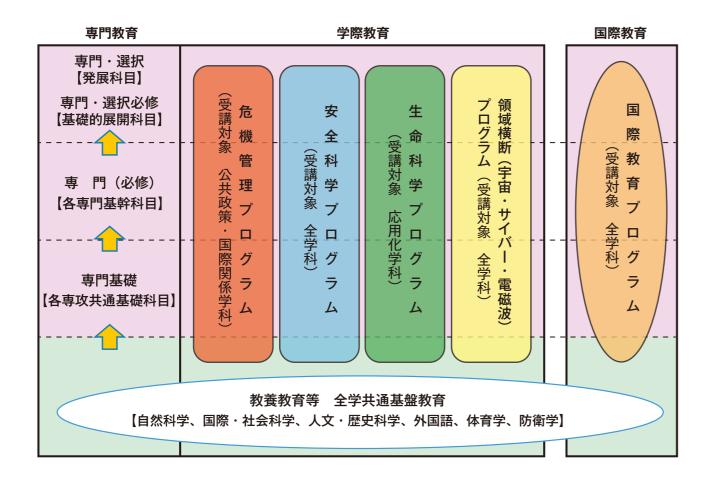
大規模災害対処計画論:地震時の未救出者分布 を把握し、対処計画の立案に活かす。

測量実習:GNSS受信機を用いた干渉測位により、三次 元的な位置情報を取得する。

単位数

※授業科目は年度によって変わることがあります。

変形量を理論値と比較・検証する。


物性を計測する。

学際·国際教育

人社系 3 学科、理工系 11 学科による専門教育以外に、専攻や学群・学科の垣根を越えて柔軟な科目履修を可能とする、新たな教育プログラム制度が 2012 年度からスタートしています。この制度は、各学科の必修科目等をコアとし、教養教育科目だけでなく、他学科・他専攻の特色ある科目を有機的に組み合わせたり、新科目を共同で開発するなどして、各学科の主たる教育体系を損なうことなく時代の趨勢に応じた新たな教育分野を展開することができるようにしたものです。

現在、学際教育分野には、本校の特色を生かした「危機管理」「安全科学」「生命科学」「領域横断(宇宙・サイバー・電磁波)」の4つのテーマ別プログラムがあり、プログラム履修を希望すれば、所属学科以外の複数学科にまたがる教育科目を各テーマに沿って学ぶことができ、学際的な視点から準専門的知識を取得し、視野を広げ、総合的な問題解決能力を高める素地が得られます。また、これらとは別に異文化コミュニケーションに重点を置いた国際教育分野には国際教育プログラムがあります。

皆さんは、2 学年に進級後、各学科のプログラム・コースごとに指定された科目群の中から必要な単位を修得すれば、各プログラムの修了証書を受け取ることができます。なお、いずれのプログラムも修了のために卒業に必要な単位が増加することはありません。

1 危機管理プログラム

21世紀の現代にあっては、安全保障環境の不確実性、不透明性、自衛隊の任務の地理的、機能的な拡大等が加速度的に進行しています。このような事態への対応力を高めるため、危機の予測、回避、対処、再発防止に関する危機管理学と、それを技術的に支える方法論について学習します。

(主なプログラム科目)

「危機リスク管理原論」、「危機管理政策」、「危機事案研究」、「災害組織論」「安全と防災の化学」、「バイオセキュリティー概論」、「震災工学」、「土木地理学」

2 安全科学プログラム

防衛・防災システムが非常事態において正しく機能するためには、システム全体が健全な状態に保たれていなくてはなりません。そこで、従来の自然科学、工学、人文社会科学や身体運動の科学といった枠を超え、非常事態という特殊かつ極限的な環境において、人間を含めた組織、機能の安全を保障する総合的な科学技術体系を構築するための基礎について学びます。

(主なプログラム科目)

「安全科学総論」、「放射線の科学」、「システム工学」、「情報セキュリティ概論」、「強度設計」、「船舶工学」、「飛行制御システム」、「大規模災害概論」

3 生命科学プログラム

近代科学の発展は、他方で危険な微生物や化学物質による安全保障上の新たな脅威をもたらしています。こうした生命環境の変化に対応し、生物・化学兵器対処や、汚染の除去といった自衛隊に新たに求められる任務遂行に必要な、生命化学等に関する基本知識と生命科学分野における課題を化学の基礎に基づいて理解し解決するための基礎を学びます。

(主なプログラム科目)

「生命化学」、「生命システム解析学」、「微生物学」、「資源環境分析」、 「生命と情報」、「科学と倫理」

4 領域横断(宇宙・サイバー・電磁波)プログラム

かつて安全保障環境は「見える」こと、そして「対象物」であることが重要とされていました。21世紀においては加えて「見えない」領域、「非対象」な領域へも拡大深化していくことが求められています。将来の陸・海・空という領域を拡大し宇宙を、そしてサイバー、電磁波といった「目に見えない非対象な領域」に対する知見を得る基礎について学びます。

(主なプログラム科目)

「航空宇宙工学概論」、「航空宇宙セキュリティー論」、「領域国際法」、 「オペレーティングシステム」、「先端エレクトロニクス入門」、「電波航法工学」

5 国際教育プログラム

自衛隊活動の国際化に対応して、多文化理解や国際的な素養そしてコミュニケーション能力を集中的に習得します。具体的には、さまざまな国々の文化、国際情勢、会話を重視した外国語の基礎知識、そしてインターネットとともに発達した新しいメディアによる多様な国際的なコミュニケーションの可能性などを学びます。

(主なプログラム科目)

「異文化交流論」、「日本・アジア史研究」、「国際関係論概説」、 「国際機構論」、「地域情報学」、「インターネットメディアコミュニケーション」、「外国語」

乗り越える、自分自身。脱ぎ捨てる、自分の甘さ。

■訓練課程

共通訓練

■目的は、「基本的な技能及び基礎的体力を向上させること」。 また、陸上、海上、航空の各自衛隊の機能について理解を深める ことも目的の一つです。

●第1学年時

第1学年時の訓練課程はすべて共通訓練であり、その内容は、敬礼や行進等の 自衛官の動作の基礎となる基本教練をはじめ、8km遠泳、富士登山、戦闘訓 練、小銃射撃、カッター、陸上・海上・航空自衛隊研修等を行います。

●第2学年時

新潟県の妙高高原においてスキー訓練を行います。

●第3学年時

第2次世界大戦中に日米の激戦地であった硫黄島の研修を行い、過去の戦跡に 学びます。

●第4学年時

入校直後の1学年に対し、基本教練の教育を行い、教官としての実習を行います。また拳銃の射撃を行います。

入校後教育

夏季定期訓練 (海上自衛隊研修)

小銃射撃

8 km遠泳

訓練課程は、各学年全員が同じ訓練を行う共通訓練と、第2学年において陸上・海上・航空要員に指定された後行う要員訓練に区分されます。

訓練は、毎週2時間程度実施される課程訓練と<mark>年間を通じ集中(1か月の訓練を1回、1週間の訓練を2回</mark>程度)して実施される定期訓練をもって行われます。

専門訓練

■「陸上・海上・航空の各要員ごとに基礎訓練と体験訓練を行い、プロとしての資質を育成すること」が目的です。

戦闘訓練

陸上要員訓練

防衛大学校卒業後、陸上自衛隊各部隊の指揮官や幕僚となるため、陸上自衛官の 野外行動の習得に始まり、徐々に隊員や部隊を運用する知識や技術を学びます。

第2学年

新潟県の関山演習場等において約10日間、射撃や戦闘訓練などを行い、野外における行動能力を養います。

●第3学年

全国各地の普通科部隊に派遣されて約3週間、第一線部隊の隊員と起居を共にして部隊勤務の実習を行います。

●第4学年

北海道大演習場で約3週間、攻撃や防御等の戦術行動を作戦の準備から実行までの一連の行動を実戦さながらに訓練します。この訓練を通じて、小部隊の指揮・運用要領などを学び、実員指揮能力の向上を図ります。

乗艦実習

海上要員訓練

防衛大学校卒業後、海上自衛隊各部隊の指揮官や幕僚となるため、シーマンシップ の習得に始まり、主に艦艇乗組員として必要な基礎的知識を学びます。

●第2学年

東京湾にてカッター及びクルーザーヨット訓練などを行い、船乗りとしての基礎を学びます。また、練習艦での乗艦実習のほか、広島県江田島市にある海上自衛隊幹部候補生学校(旧海軍兵学校)、潜水艦を研修します。

●第3学年

護衛艦に乗り込んで訓練を実施する乗艦実習と、航空部隊の実習を行うほか、慣海性を養成するため、クルーザーヨットを使用した巡航訓練を行います。

●第4学年

機動艇を使用した巡航訓練や護衛艦での乗艦実習にてシーマンシップを養成するとともに、操船シミュレータを使用した訓練を実施し、艦艇勤務の基礎を学びます。

グライダー訓練

航空要員訓練

防衛大学校卒業後、航空自衛隊各部隊の指揮官や幕僚等となるため、航空自衛隊 に関する座学等に始まり、徐々に組織的な部隊の運用要領を学びます。

●第2学年

グライダーに搭乗する訓練により、空中で勤務することの特性について体得するほか、整備、管制や気象などの航空機を運用するにあたり必要な基礎事項について主に座学により学びます。

●第3学年

戦闘機を有する基地で約3週間、基地の隊員と起居を共にして基地勤務の実習を行います。この間、小型ジェット機への搭乗の他、基地に所在する多種多様な部隊で実習等を行います。

●第4学年

航空団を編成し、学生自らが指揮官となってグライダーを運用する訓練を行い、組織的な部隊運用要領を学びます。また、基礎的な作戦について図上演習を行います。

N A I I O N A L DEFENSE A C A DE WITT

ここにしかないもの、ここでしか体験できないもの。防大ならではの行事。

を打ち破ります。

前期定期試験

MIERNAIION ALEXCHANGI

■国際交流

●世界各国の士官学校への留学生の派遣及び受け入れ

○派遣

海外派遣は、第3学年の本科学生を対象として、年間約50名 (短期・長期合わせて) が成績や語学力を考慮した上で、将来の幹部自衛官として必要な国際的視野に立脚した識見を養うとともに、進展性のある資質を育成することを目的として行っています。

- ★短期(約1~3週間) アメリカ・カナダ・シンガポール等
- ★長期(約4ヵ月間) アメリカ・フランス・ドイツ・韓国・カタールの 各軍士官学校等
- ★長期(約1ヵ年間) 韓国空軍士官学校

防衛大学校では、士官候補生等の留学生の受け入れや、短期的な研修の受け入れを行い、国際交流を図っています。

★留学生の受け入れ

タイ、シンガポール、マレーシア、フィリピン、インドネシア、モンゴル、ベトナム、韓国、カンボジア、東ティモール、ラオスなどの11ヵ国の士官候補生を留学生として受け入れ、日本の学生同様に教育訓練を行っています。在校学生は現在約110名(本科)であり、本科のほか、研究科に在籍している留学生もいます。

★交換留学生

アメリカ・オーストラリア・インド・韓国・シンガポール・タイ等の各士官候補生が毎年数週間又は4ヵ月間の研修に来ています。

●国際士官候補生会議(ICC)

●ICCとは

ICCとは、国際士官候補生会議
(International Cadets' Conference) のことで

す

防衛大学校主催により、諸外国の士官候補生を招 へいして国際会議を実施し、国際情勢及び安全保障 に関する討議等を行い、各国と我が国の将来に安全 保障につながる相互理解と信頼関係の促進を目的と しています。

アメリカ、オーストラリア、インド、イギリス、フランス、ドイツ、イタリア、韓国、カナダ、ニュージーランド等、世界各地から約20ヵ国の士官候補生を招へいし、7日間程度の日程で行っています。

また、(1)学生に対する国際交流の機会の付与(国際感覚の醸成)、(2)学生の国際的視野の拡大、国際情勢認識及び語学力の向上を重視しています。

ICCの歴史

●過去ICCの討議内容は以下のとおり行われました。

第1回から第3回

『包括的な安全保障』について

第4回

国際協力と人権、軍隊における女性の役割、21世紀において 国連がなすべき役割について

第5回

21世紀における新たな脅威とその対応について

第6回

士官学校の現状と将来、将来のリーダーの理想像、及び文民と軍人の関係について

第7回から第9回から

国際社会における軍隊、国際協力及び士官の役割と軍事専 門学校の教育について

月10回

多極化された国際事情、特に冷戦後の安全保障について 第11回

地球環境と安全保障、人権問題と内戦干渉問題及び平和の構築と、これから各国がとるべき対応について

第12回

東アジアの安全保障、軍備管理の現状と課題、科学技術の進歩が軍隊に与える影響について

第13回

多様化する脅威への軍隊の対応とその新たな役割について 第14回

国際安全保障環境と士官候補生について

第15回

これからの国際秩序を考える第16回

未来における軍事の役割

第17回 リーダーシップと士官候補生のあるべき姿

リーダ 第18回

我々を待ち受ける試練ー将来のリーダーシップ

第19回

国境を超えた戦場ー多国間協力とリーダーシップ

第20回

軍のリーダーシップにおける課題:変化する戦場

第21回及び第22回

理想の指揮官になるために

第23回及び第24回

新型コロナウイルス (COVID-19) 感染拡大のため中止 第25回

変化する世界、変わらない信念~ To Be Leaders ~ (オンライン形式で実施)

第26回

変容する安全保障の諸側面 "Various Perspectives on the Future Security" (オンライン形式で実施)

団体生活の中で飾りを脱ぎ捨てた時、リアルな自分が見えてくる。

■学生舎生活

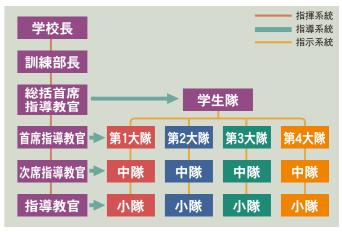
防衛大学校の学生は入校と同時に全員学生舎での団体生活を 送ります。

学生舎には、自習室、寝室、集会室、シャワー室、洗濯室な どが完備されています。

自習室と寝室は8人を基準とした部屋単位で使用し、第1~ 第4学年が一緒に生活します。

学生舎での生活は、将来幹部自衛官となるべき資質を養う場 でもあります。したがって一般の学生寮とは異なり、自由に 使える時間は大きく制限され、規則正しい生活を送ります。 常に人目に触れる生活を通し、幹部自衛官にふさわしい資質 を養います。最初はとまどいもあると思いますが、よき先輩 や後輩、生涯にわたるかけがえのない友人にも出逢える機会 となります。

自習室:個人ごとに自習スペースがあります。


寝室:ベッドとロッカーが置かれています。

我(われ)を捨てることの困難さを知る。

学生隊

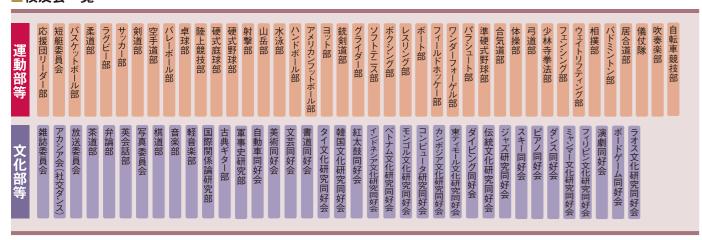
学生隊とは、学生相互の理解を深め、融和団結を図り、 学生の共同生活を円滑にし、あわせて学生に部隊指揮及 び業務処理の基礎的能力を修得させることを目的とし た、学生をもって編成される学生組織です。防衛大学校 の学生は入校と同時に全員学生隊に所属することになり ます。

学生隊の運営は訓練部長以下、各指導教官(幹部自衛官) の指導のもとに各学生長、週番学生等によって自主的に 行われています。また、教育や訓練、各種競技会など校 内における行事は学生隊を主体として行われます。

学生隊は、4個大隊からなり、1個大隊は4個の中隊、1個中隊は3個の小隊で編成されて います。(1個小隊約40名)

第4大隊旗(橙)

観閲式 (開校記念祭) における学生隊の行進


一生続く「友情」が、ここにある。

校友会とは、いわゆるクラブ活動のことです。スポーツと文化の両分野での活動を通じて友情を育み、気力・体力 の向上と連帯感の養成を目指します。

校友会組織は委員会、運動部、文化部、同好会に分かれており、各部等の多くは大学リーグ等に加入して他大学と の試合など、交流も積極的に行っています。

学生は第1学年時に全員が希望する運動部等に原則入部することになっており、あわせて文化部にも入部すること ができます。

■校友会一覧

硬式野球部

応援団リーダー部

フェンシング部

体操部

ラグビー部

ワンダーフォーゲル部

空手道部

自転車競技部

射撃部

少林寺拳法部

水泳部 (水球パート)

ダイビング同好会

「規則正しい生活」という緊張感に包まれる。

■学生の一日

防衛大学校では決められた日課に従って規則正しい生活が送られています。 防大生の多忙な1日を、起床から就寝まで時間を追って紹介します。

6:00 起床

6:05 日朝点呼

起床ラッパの音で一斉起床。寝具を片付 け、着替えを済ませて学生舎前に5分で整 列します。


6:10~6:30 清掃

6:35~7:20 朝食

8:00 朝礼 3:10 国旗掲揚 課業行進

8:30~11:40 授業[1~4時限]

(一斉喫食12:00~) 全員が学生食堂に集合し、昼食をとり

12:45 課業行進

授業[5~8時限]

課業終了~18:15 校友会活動

18:15~19:15 夕食 学生同士で談笑しながら食事をとりま

19:30 ~22:00 自習時間

日夕点呼

22:30 消灯 必要な場合は届け出て消灯を延長することができます。

4年間の勉学生活の後に待っているもの。

■卒業後の進路

防衛大学校という、厳しくも有意義な学生生活を終えた後には、自衛官任官への道が待っています。陸上要員は 陸上自衛官(陸曹長)に、海上要員は海上自衛官(海曹長)に、航空要員は航空自衛官(空曹長)にそれぞれ任命され、 幹部候補生として各自衛隊の幹部候補生学校に入校します。

陸上は約10ヶ月の幹部候補生学校での教育訓練と約2ヶ月の部隊勤務等を経て、防衛大学校卒業後約1年で 幹部自衛官(3等陸尉)に任命されます。

海上は約1年間の幹部候補生学校での教育訓練を経て幹部自衛官(3等海尉)に任命され、国内巡航を経て遠洋練習航海に出発します。

航空は、約9か月の幹部候補生学校での教育訓練と約3か月の部隊勤務等を経て、防衛大学校卒業後約1年で幹部自衛官(3等空尉)に任命されます。

そして、その後は自衛隊の職域に応じた専門教育を受けながら幹部としての道を進みます。将来は各自の能力・努力に応じて重要な地位に就くことになります。

陸上自衛官 小隊長、中隊長、大隊長、連隊長などの指揮官、学校教官等 及び陸上幕僚監部等司令部での勤務

官等及び海上幕僚監部等司令部での勤務

空自衛官 パイロット、ミサイル、レーダー等運用指揮官、学校教官等及び 航空幕僚監部等司令部での勤務

陸上・海上・航空 防衛大学校、内部部局、統合幕僚監部、情報本部、防衛装 **自衛官共通職務** 備庁、防衛監察本部等での勤務

その他に、防衛大学校研究科への入校(防衛省各機関の長の推薦を受けた者)や、国内大学院修士・博士課程入学、大学での研修、外国の軍学校などへの留学の機会もあります。

いわゆる大学院。ただし、選抜された者だけが学べる。

研究科

自衛隊の任務遂行に必要な高度の理論と応用についての知識や、これらに関する研究能力を修得させるための教育を行うことを目的としています。内容は、大学院設置基準の修士課程・博士課程に準拠しています。受験資格は部隊勤務を経て防衛省各機関の長が推薦した者に与えられます。また、特別研究員(非常勤職員として研究補助業務(RA)又は教育補助業務(TA)に従事しながら、研究科前期課程又は後期課程に学生として在籍し研究を行う者)の募集も行っています。

理工学研究科前期課程

●概要

理学及び工学に関する高度の理論と応用についての知識、これらに関する研究能力を修得させるための教育を行っています。1学年の学生数は約90名、修学年限は2年です。

専攻は「電子工学」、「機械工学」、 「航空宇宙工学」、「物質工学」、「情報数理」、「境界科学」及び「地球環境科学」の7専攻です。

●学位

独立行政法人大学改革支援・学位授与機構が実施する、論文の審査と試験に合格すると、修士(理学又は工学)の学位が授与されます。

●受験資格

防衛省各機関の長が推薦した者だけに受験資格が与えられます。 推薦は幹部自衛官、または自衛官以外の隊員で、防衛大学校を卒業した者、学校教育法による大学を卒業した者、または文部科学大臣がこれらと同等以上の学力があると認めた者のうちから行われます。

理工学研究科後期課程

●概要

装備等の開発能力を有する人材を育成するため、専門的かつ高度な研究能力及びその基礎となる学識を修得させるための教育を行います。1 学年の学生数は約20名、修学年限は3年です。専攻は「電子情報工学系」、「装備・基盤工学系」及び「物質・基礎科学系」の3専攻です。

●学位

独立行政法人大学改革支援・学位授与機構が実施する、論文の審査と試験に合格すると、博士 (理学又は工学)の学位が授与されます。

●受験資格

総合安全保障研究科前期課程

概要

社会科学の専門的学識に裏付けられた安全保障に関する幅広い視野と高度の実践的問題解決能力を養うための教育を行っています。1学年の学生数は約20名、修業年限は2年です。専攻は総合安全保障の1専攻で、この専攻の中に「国際安全保障コース」、「戦略科学コース」及び「安全保障法コース」の3つの履修コースを設けています。

●学位

独立行政法人大学改革支援・学位授与機構が実施する、論文の審査と試験に合格すると、修士(安全保障学)の学位が授与されます。

●受験資格

防衛省各機関の長が推薦した者 だけに受験資格が与えられます。 推薦は幹部自衛官、または自衛 官以外の隊員で、防衛大学校を 卒業した者、学校教育法による 大学を卒業した者、または文部 科学大臣がこれらと同等以上の 学力があると認めた者のうちか ら行われます。

総合安全保障研究科後期課程

概要

安全保障研究の一大拠点として、 高度化・多様化した安全保障・ 戦略問題の最新の研究成果を踏まえ、安全保障の広い領域にわたる高度の専門的学識と実務的 能力を持つ人材を養成します。1 学年の学生数は約7名、修業年限は3年です。専攻は、総合安全保障の1専攻です。

●学位

独立行政法人大学改革支援・学 位授与機構が実施する、論文の 審査と試験に合格すると、博士 (安全保障学)の学位が授与され ます。

●受験資格

防衛省各機関の長が推薦した者 だけに受験資格が与えられます。 推薦は幹部自衛官、防衛大学校衛 官以外の隊員で、防衛大学衛軍 学校総合安全保障研究科前期課程又は防期 学校総合安全保障び死有は防期 程を卒業した者及び平有は防事 で取得長が修士の学者を不りまする防する が取長が修士の学があると により上の学行われます。

極微細構造素子の制作室(クリーンルーム)

移動体操縦模擬装置実験

运囚] 示小工于册:

電波暗室でのアンテナ・レーダ断面積測定

「戦略とゲーム理論」講義

SO NATIONAL DEFENSE ACADEMIT

■先端学術推進機構の紹介

グローバルセキュリティセンター Center for Global Security



2016 年 4 月、防衛大学校にグローバルセキュリティセンター(GS)が発足しました。GS は、国際社会が直 面する多種多様な安全保障課題を多角的に研究し、その研究成果を広く発信することを目的としています。 GS の特徴は、第一に、文理融合型の統合的な研究アプローチにあります。約 300 名の防衛大学校教官の専門知 識を総動員し、人文社会科学、理工学、防衛学による学際的な最先端研究に取り組みます。第二に、国内外の研 究者と積極的に交流し、防衛大学校を安全保障研究の一大拠点として世界にアピールしていきます。こうして学 内に蓄積されていく研究成果は、最先端の知見として、学生への教育に還元されていきます。

ジェンダー・多様性・リーダーシップ開発セミナー風景

刊行物

GS 研究プログラム一例

グローバルセキュリティセンターでは、

- ●アジア安全保障 ●サイバーセキュリティー
- ●宇宙安全保障 ●海洋安全保障
- ●感染症対策と安全保障●防災・危機管理
- ●ジェンダー・メンタルヘルス
- ●ミリタリープロフェッショナリズム
- ●安全保障・軍事作戦法規
- ●デュアルユーステクノロジー
- ●シミュレーション、オペレーションズ・リサーチ の11分野に焦点を当て、多様で実用的な研究を国内 外の研究者と協働して積極的に進めています。

こうした研究成果の一部として、

(写真左・左下) イスラエル・オープン大学との共同 セミナーにおいては、英文セミナー叢書『日本とノ ルウェーにおけるジェンダー・多様性・リーダーシッ プの開発』を発行しています。

(写真右下) スウェーデン国防研究所 (FOI) との共 同セミナーにおいては、英文セミナー叢書『北朝鮮 におけるセキュリティ脅威の再検討』を発行してい ます。

その他のセミナー叢書や研究叢書及び調査報告の発 行、さらにグローバルセキュリティセンターの活動 実績を、グローバルヤキュリティヤンターのホーム ページで公開する形で世界に発信しております。

沿革 昭和27年8月 保安庁の付属機関として保安大学校を設置 平成11年3月 総合安全保障研究科第1期学生卒業 横須賀市久里浜の校舎で開校 本科第1期(理工学 平成12年4月 本科の組織改編(6学群、14学科(理工系11、人社系3)、 昭和28年4月 7教育室に) 重攻)学牛入校 防衛庁設置法の施行に伴い、校名を防衛大学校と改称 理工学研究科後期課程(博士課程)第1期学生入校 昭和30年3月 横須賀市小原台の新校舎に移転 平成16年3月 理工学研究科後期課程(博士課程)第1期学生卒業 昭和32年3月 本科第1期学生卒業 副校長を増設 学術情報センターを新設 平成17年4月 昭和33年7月 タイ王国留学生1名を受け入れ、外国人に対する教育 防衛学教育学群に安全保障危機管理教育センターを新設 平成21年4月 総合安全保障研究科後期課程(博士課程)第1期学生 訓練がスタート 昭和37年4月 理工学研究科第1期学生入校 昭和39年3月 理工学研究科第1期学生卒業 図書館と学術情報センターを統合し、総合情報図書館を新設 昭和49年4月 本科人文·社会科学専攻開設 平成24年3月 総合安全保障研究科後期課程(博士課程)第1期学生 平成元年4月 本科教育課程の専門区分改正(理工学専攻の6専門 区分を14学科に、人文・社会科学専攻の2専門区分を 平成24年9月 本科総合選抜採用試験制度開始 2学科に) 平成25年3月 本科一般採用試験(後期日程)制度開始 平成2年3月 留学生に対し、日本語教育がスタート 平成27年4月 教務部に教養教育センター、国際交流センターを新設 平成28年4月 総合情報図書館にグローバルセキュリティセンターを新設 平成 3 年9月 本科推薦採用試験制度開始 平成 4 年3月 卒業生に学位授与機構(文部省)から学位授与開始 平成30年4月 教育研究推進室、教養教育センター、国際交流センター及びグ 平成 4 年4月 本科女子第1期学生入校 ローバルセキュリティセンターを統合し先端学術推進機構を新設 平成8年3月 本科女子第1期学生卒業 平成31年3月 本科一般採用試験(後期日程)制度廃止 令和3年4月 幹事を廃止し、副校長(自衛官)を新設 理工学研究科教育課程の改革(専門・系列を専攻・大講座に) 平成8年4月 平成 9 年4月 総合安全保障研究科第1期学生入校 令和6年4月 情報工学科を改編し、サイバー・情報工学科を新設 組織図 学 校 長 副校長 副校長 交诵アクセス ■京浜急行電鉄堀ノ内駅で浦賀行きに乗換え、「馬 ■■■■ JR横須賀線 堀海岸駅」下車、京浜急行バス「防衛大学校行き」 ■京浜急行電鉄 約7分、または徒歩で約25分 「馬堀海岸駅」:京浜急行電鉄「品川駅」から 快特 (堀ノ内乗換え)利用の場合、約60分 ■JR横須賀線「横須賀駅」下車、京浜急行バス 「防衛大学校行き」約30分 「横須賀駅」: JR横須賀線「東京駅」から約75分 ■横浜横須賀道路「馬堀海岸インター」から約5分 馬堀海岸インター 馬堀海岸 防衛大学校 〒239-8686 神奈川県横須賀市走水1丁目10番20号 三浦海岸 (TEL:046-841-3810(代表)

受験生のための防大相談室

Q1 ■なぜ「大学」でなく「大学校」なの?

A1. 防衛大学校は、文部科学省所管の学校ではなく、「将来、陸上・海上・航空の各自衛隊の幹部自衛官となるべき者を養成するため」に防衛省設置法によって設立された、防衛省所管の学校です。国の予算で設立された学校であっても、文部科学省所管でないために「大学校」と呼ばれています。

防衛大学校の教育課程は文部科学省の定めた大学設置基準に準拠した教育を行っております。卒業生には、(独) 大学改革支援・学位授与機構による外部審査を受けた後に学位(学士) が授与されます。

Q2 ■大学院はあるの?

A2. 本校には、大学院に相当する「研究科」が設置されており、卒業後、 幹部自衛官として数年間勤務した後、研究科に進む道もあります。 修業年限は2年間で定員は1学年につき理工学研究科前期課程が 90名で、総合安全保障研究科前期課程が20名となっています。 (独)大学改革支援・学位授与機構の論文審査と試験に合格すると、「修士」の学位が授与されます。

平成 13 年度からは理工学研究科後期課程が開設され、また、平成 21 年度からは総合安全保障研究科後期課程も開設され、(独) 大学 改革支援・学位授与機構の論文審査と試験に合格すると、「博士」の 学位が授与されます。研究科は自衛隊の任務遂行に必要な高度な知識と研究能力修得のための教育を目的としており、受験は部隊勤務を経て、防衛省各機関の長の推薦を受けることが条件となります。なお、入学金及び授業料については本科同様無料となっています。

Q3 ■授業料がかからないって本当?

A3. 防衛大学校学生は自衛隊員 (特別職国家公務員) であり、学業、訓練に専念することが仕事です。このため入学金や授業料がかからないばかりか、毎月学生手当として給与が支給されます。したがって、一般大学とは違い自分の都合だけで授業や訓練を休んだりすることはできません。

Q4 ■学生手当はいくらもらえる?

A4. 防衛大学校学生は毎月 131,300 円 (令和5年 12 月現在) が支給されます。このほかにも年2回(6月、12月)の期末手当(いわゆるボーナス、年約 428,105円(令和5年度支給額)) も支給されます。

学生手当は主として学業のために使用することが望ましく、具体的には勉学、校友会(クラブ)活動、日常経費に使用し、余分の金銭は貯金して必要な際に備えるよう指導しています。

Q5 ■体力に自信がないけれど大丈夫?

A5. 幹部自衛官には高いレベルの体力が必要です。学生は体育、訓練及び校友会活動を通じて強靱な体力を育成しなければなりません。体力については各学年ごとに目標値が設定されており、目標に到達しない学生については科学的かつ合理的な体力向上のためのプログラムが組まれています。

Q6 ■校友会活動ってなに?

A6. 校友会活動は、いわゆるクラブ活動のことで「教育・訓練」及び「規律ある団体生活(学生舎生活)」と並んで本校教育方針の三本柱として位置づけられるものです。よって、原則として全員が運動部等に入部するとともに、文化部活動も活発に行われています。

Q7 ■自宅通学はできるの?

A7. 学生は全員入校と同時に学生舎で生活することが義務づけられ、自宅から通うことはできません。

学生舎には、自習室、寝室、集会室、シャワー室、洗濯室等の設備があります。自習室と寝室は8人部屋(基準)となっており、第1学年から第4学年までの学生が同じ部屋で一緒に生活します。

Q8 ■外出や外泊はできるの?

A8. 土曜日は8:00~23:20まで、日曜日と祝日は8:00~22:20まで外出ができます。外出することなく食事を申請して校内に所在することもできます。また、週末には申請を行うことにより、外泊することもできます。

年間の休暇は、夏季休暇(約3週間)、冬季休暇(約1週間)、春季休暇(約1週間)があり、この間は帰省や海外旅行等もできますが、校友会活動の合宿などに充てられることもあります。

Q9 ■アルバイトはできるの?

A9. 防衛大学校の学生は自衛隊員(特別職国家公務員)であることから、アルバイトはできません。

Q10 ■学校行事にはどんなものがあるの?

A10. 入校式、卒業式、開校記念祭などの3大行事のほか、各種競技会、観閲式、文化部発表会などの行事があります。

Q11 ■要員配分ってなんのこと?

A11. 卒業後、陸上・海上・航空の各自衛隊のうち、どの自衛官となるのかを決めることを要員配分といい、第2学年進級時に、本人の希望や適性、成績などを踏まえた上で決定します。 陸上・海上・航空の要員配分の割合は概ね2:1:1です。 決定後は、それぞれの要員別の専門教育や訓練を受けることになります。

Q12 ■転職はできるの?

A12. 防衛大学校は「将来幹部自衛官となるべき者」を養成する学校であり、在校中に転職活動をすることは禁じられています。本校を卒業すると陸上・海上・航空の各自衛隊の自衛官(曹長)に任官し、幹部候補生として、それぞれの幹部候補生学校(陸上:福岡県久留米市、海上:広島県江田島市、航空:奈良県奈良市)に入校し教育を受けます。

その後部隊勤務を経て、防衛大学校卒業後約1年で初級幹部自衛官である3尉に任命されます。

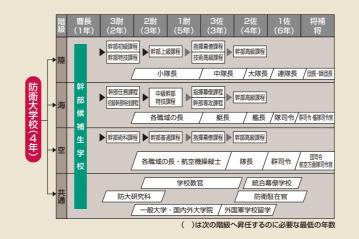
Q13 ■留学制度はあるの?

A13. 本校には、1週間から1年間程度の海外留学制度があります。 留学先はアメリカ、オーストラリア、韓国、シンガポール、タイ、中国、 ドイツ、フランス、カタール、ブラジル等の士官学校等で、成績や 語学力を考慮した上で毎年約50名が選抜され派遣されます。

本校においても諸外国との友好・親善を促進することを目的として、 インドネシア、韓国、カンボジア、タイ、東ティモール、フィリピン、 ベトナム、モンゴル、ラオス、ミャンマー、マレーシア等からの留 学生を受け入れています。

留学生に対して行われる日本語教育

Q14 ■訓練ってどのくらいするの?


A14. 訓練には主に第1学年時に履修する共通訓練と、第2学年から陸上・海上・航空の各要員別に履修する専門訓練があります。 週1回2時間の訓練の他、春(約1週間)、夏(約1か月)、秋(約 1週間)、冬(約1週間)に集中的に行われる定期訓練があります。

Q15 ■キャリアプラン (CareerPlan) はどうなっているの?

A15. 防衛大学校卒業後は、陸・海・空曹長に任命され、幹部候補 生学校(陸上…福岡県久留米市、海上…広島県江田島市、航空…奈 良県奈良市)における教育を受け、その後部隊又は海上勤務などを 経て、防衛大学校卒業後約1年で幹部自衛官(3等陸・海・空尉) に任命されます。

その後、部隊勤務をはじめ、各種課程教育、技術教育、および語学教育を履修するほか、本校理工学研究科および総合安全保障研究科における教育、国内外大学院の修士課程・博士課程への入学や、一般大学での研修、外国の軍学校に留学する機会もあります。

こうして幹部としての道を進み、さらに自己の能力と努力に経験と 研修を重ね、自衛隊を運用することなど、国の防衛の大任を果たす 重要な地位につくことができます。

016 ■定期試験はいつ?

A16. 学期末(例年前期が10月上旬、後期が2月末)にそれぞれ1週間行われます。試験の結果は、秀・優・良・可・不可の5段階で評価され、第1学年では35単位以上取得できないと進級が認められません。よって、日課時限にある自習時間のほか、消灯時間を延長して勉強することもあります。

Q17 ■学科は選べるの?

A17. 第2学年進級時に各学科への配分(専門配分)が行われます。 学科は全部で14学科(人社系3学科、理工系11学科)あり、これは本人の希望及び成績に応じて決定されます。

理工系の学科の場合、そのほとんどが物理系の学科であるため、物理が大変重要な科目となります。高校時代に少なくとも物理基礎(物理)) を履修しておくことが必要です。

理工学専攻は、学科に進む前にまず専門基礎である数学、物理、化 学が必修科目であり、人文・社会科学専攻においても教養教育とし て数学、物理及び化学は必修科目となります。

Q18 ■私服は許される?

A18. 学生は定められた制服等を着用しなければなりませんが、外出を許可され、または休暇を与えられて校外において私用で行動する場合などには、私服を着用することができます。ただし、第1学年は外出時、私服の着用を禁止されています。

Q19 ■運転免許証はとれる?

A19. 運転免許証の取得を希望する学生は、指導教官の許可を受け、外出時または休暇時を利用して、民間の自動車学校等に通うことができます。車両の運転についても、事前に届け出ることにより、外出時または休暇時に限り許可されます。(自動二輪及び原動機付き自転車は除く。)

Q20 ■学生舎でお酒を飲んではダメ?

A20. 校内においては、酒類を所持し、または飲酒することはできませんが、学校長が主催する会合等へ参加する場合に限って飲酒することができます。

なお、喫煙については指定場所において法律で認められた範囲内で 許可されています。

ープンキャンパス

令和6年度は、6・7月に実施を予定しています。(写真は令和5年度の様子です。)

■学校長ウェルカムスピーチ及び学校紹介

久保文明学校長が、来校者の皆様にスピー チを行いました。

■入試概要説明

職員が推薦試験、総合選抜試験、一般試験 の試験の日程や特色について、説明しました。

■個別入試相談

入試に関する質問等について、職員が丁寧 な説明を実施しました。

■模擬授業

☆

防衛大学校の授業を体験していただきまし た。

■研究室公開

普段見ることができない研究室を公開しま した。

■学科及び教育室紹介

学科等の教官、研究科学生(大学院生)が、特 色・カリキュラム等を詳しく紹介し、来校 者からの質問等に対して説明いたしました。

■学生舎見学

自習室・寝室等学生が実際に生活している 施設を見学していただきました。

■本科学生によるトークショー(6月)

学生舎生活や訓練を通しての出来事を中心 に在校生がトークショーを行いました。

■儀仗隊展示(6月)

防大で最も知名度が高い集団といっても過 言ではない儀仗隊のドリル演技を参加者の 皆様に披露しました。

■現役将官による体験談(7月)

防大を卒業した現役陸将が、自身の体験談 をお話ししました。

■防大卒業生との懇談(7月)

防大卒業生である研究科学生と懇談の中で、 卒業後の進路や、防大での生活について等、 参加者の皆様からの質問に回答しました。

■制服試着体験(7月)

防大生の制服を着用して、記念写真を撮影 できるブースを出展しました。

防衛大学校入試広報チャンネル

防衛大学校入試広報チャンネルでは、在校生やOB・OGからのメッセージ、 模擬授業を掲載しております。

0

