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Overview & Background

« Obstacle detection and avoidance is a necessary for UUV. Fishing nets are difficult to
detect and knowing the location of fishing nets is important for avoidance action.

» Therefore, research is being conducted to study the improvement of the accuracy of the
fishing net detection program, as well as to conduct tests on the Hardware in the
simulator(HILS) at the Iwakuni Maritime Environment Test & Evaluation Satellite(IMETS).

Large Tank in IMETS — 30m width X 35 m long X 11m depth (Plan view)
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I Develop a program to detect fishing nets, simulate fishing
nets in the HILS system and carry out a test evaluation
of the fishing net detection capability.

HILS system

Research Questions
1. How to detect fishing nets using Machine Learning (ML) models object detection models?
2. How to integrate developed ML models into the HILS system?
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Machine learning models — Dataset

® 1678 images from IMETS Water Tank and various Fishing nets including 478 public fishing net images
Training Set (Overlapping images but they are treated as separate images)
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Overview of ML models used in this study

Model

YOLO
(You Look Only Once model)

Faster R-CNN ( Region-

based Convolutional Neural

Networks) RES N ET

(Residual Networks)

Faster R-CNN

Swin Transformer
(Shifted Window
Transformer)

Efficientdet

Type

Single Stage

Two stage

Two stage

Single Stage

Speed

Very good

good

good

good

Accuracy

Very good

good

good

Very good

Feature extraction

CSP (Cross-Stage Partial)

RESNET?34,50,101

SWIN Transformer

Efficient Net
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IMET S Results — Faster R—CNN with a RESNET feature extractor

Faster R-CNN has a two-stage architecture. In the first stage, a Region Proposal Network
(RPN) scans the image and proposes regions that might contain objects. Then, in the
second stage, each proposed region is classified and its bounding box is refined.
RESNET — 34, RESNET-50, RESNET-101, RESNET — 152 are tested to extract features.

RESNET - 101 RESNET - 152
epoch train_loss | valid loss | mAP@IoU | mAP@IoU epoch train_loss | valid _loss | mAP@IoU | mAP@IoU
>0.5 0.5:0.95 >0.5 0.5:0.95
0| 2.270631| 1.961415| 0.493934| 0.274304 0| 1.635582| 1.256892| 0.631945 0.42013
11 1.213979| 1.220275| 0.733017| 0.507363 1| 0.829538 0.82414| 0.836847| 0.630583
2 0.8829| 1.039559| 0.828376| 0.626742 2| 0.655427| 0.735213| 0.877903| 0.693057
3| 0.910959| 1.003706| 0.841134| 0.640351 3] 0.612222| 0.712022| 0.872079| 0.683245

mAP — Mean Average Precision

Sample loU scores

0.95 0.65 0.25 (o}

identity

Intersection over Union (loU) measures the overlap
between predicted and ground truth boxes
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IMET S Results — Faster R-CNN with a Shifted Window Transformer

Using the Swin transformer has shown lower accuracy compared to RESNET. However, this
may depend on the dataset and application. The Swin Transformer’s architecture is built on
a combination of hierarchical design and window-based self-attention for efficient working

and feature extraction.

Fasterrcnn_swin_base

epoch

train_loss

valid_loss

mAP@IoU
>0.5

mAP@IoU
0.5:0.95

0

0.215663

0.211138

0.740475

0.314077

1

0.12426

0.122734

0.790212

0.392322

2

0.16846

0.162612

0.865228

0.479912

Fasterrcnn_swin_large

epoch

train_loss

valid_loss

mAP@IoU
>0.5

mAP@IoU
0.5:0.95

0.252893

0.225944

0.559516

0.211596

0.193553

0.164562

0.782309

0.387796

N | —~|O

0.169299

0.151057

0.903895

0.526077

0.146452

0.143081

0.922239

0.563626

Increasing Accuracy (mAP)
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Results — Efficientdet models

EfficientDets are developed based on the advanced backbone and a new scaling technique
Implementing an EfficientNet backbone, it is possible to achieve much better accuracy.

Efficientdet_d1

epoch train_loss | valid _loss | mAP@IoU | mAP@IoU .
>(0.5 0.5:0.95 [al
0| 0.759083| 0.689068| 0.835724| 0.646752 E
1| 0.793325| 0.712323| 0.853231| 0.673431 5
2| 0.832396| 0.769463| 0.871815| 0.694135 ©
>
o
Efficientdet_d4 <
%
epoch train_loss | valid loss | mAP@IoU | mAP@IoU 0
>(0.5 0.5:0.95 8
0] 0.800551| 0.887823| 0.885345| 0.690316 E
11 0.782212| 0.871231| 0.903112| 0.703145 o
2| 0.754045| 0.867921| 0.912585| 0.722585
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Results — Yolov11 model predictions
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Results — Summary

Machine Learning | Mean Average ® YOLO11 model shown the best result
Models Precision@loU
0.5:0.95 ® Results reflects the ML detection potential

Fastrcnn_resnet101 0.640 in varying test positions and fishing net
Fastrcnn_resnet152 0.683 colours
Fasterrcnn_swin_base 0.480 ® [t could deploy within HILS potentially.
Fasterrcnn_swin_large 0.564
Efficientdet_d1 0.694
Efficientdet_d4 0.722 Next steps
Yolo8n 0.838 ® Incorporating the impact of angles and
Yolol1n 0.862 lighting conditions

® Further Hyper parametric optimisation
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