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研究の目的

NVセンタとは

NVセンタ量子磁気センサの利点 研究の経緯と方向性

NVセンタ量子磁気センサの基本原理

人工ダイヤ結晶

NVセンタはスピンと呼ばれる磁気的な性質を有する。

光検出磁気共鳴（ODMR）により、常温でも超高感度な
磁気センサとして利用可能

ダイヤ結晶中の一部の炭素原子が窒素(N)に置換され、
隣接する位置に空孔(V)ができる格子欠陥の一種

窒素(N)と空孔(Vacancy)

マイクロ波

光とマイクロ波で磁場強度を検知（ODMR）

レーザ

蛍光が
消える！

②共鳴周波数のマイクロ波を印加すると
光らなくなる。

③マイクロ波周波数とダイヤの蛍光強度
は以下のように変化する。
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④外部磁場が変化すると原子のエネルギー
準位が変化し（ゼーマン分裂）、共鳴周波
数が変化する。
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①NVセンタを含むダイヤにレーザを当て
ると赤く光る。
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高感度かつ広いダイナミッ
クレンジで、地磁気のよう
な強い環境磁場の下でも、
樹脂製地雷の微少磁場を検
出可能

センサヘッドが小さく、
任意の場所に取り付け
可能
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現時点達成感度
30nT/√Hz（DC）
10nT/√Hz（AC）

パルス化前
1.34μT/√Hz
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OPM：光ポンピング磁力計
SQUID：超伝導量子干渉計
TMR：トンネル効果磁気抵抗
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駆動回路

マイクロ波の
パルス照射

による
高感度化

小型化

従来の磁気センサでは探知が困難な、金属含有量が少ない樹脂製地雷が増加する中、民生で
応用研究段階に入りつつあるダイヤモンドNVセンタ（以下「NVセンタ」という。）による量子磁気セ
ンサ技術を使い、地雷探知性能の向上を図る。実現には、小型軽量かつ高い感度を有する量子
磁気センサ技術の確立が課題である。

センサヘッド

※浜松ホトニクスNews Release（2022年2月24日）
※※グローバル電子㈱ TMRスイッチセンサラインナップ
※※※CRYOGENIC S700X SQUID Magnetometer

※ ※※

※※※

連続波によるODMR パルス化ODMR

（ODMR： Optically Detected Magnetic Resonance）
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高感度化のアプローチ
マイクロ波を連続波ではなく、パルス照射し、NVセンタの量子的性
質（重ね合わせ）を利用することで、磁場感度を大きく改善する。 明 |0⟩

暗 |1⟩

明 |0⟩

暗 |1⟩
スピンは回転を続け、明
るい状態と暗い状態が
50%ずつ存在

スピンを100%暗い
状態に制御できる
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ピークを分離できず
感度が低い

明確にピーク分離でき
感度が高い

2.8162.808 2.800 2.8162.808
マイクロ波周波数(GHz) マイクロ波周波数(GHz)
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T1の緩和時間
スピン-外部磁
場との相互作用

T2の緩和時間
スピン-スピン

相互作用

T2*の緩和時間
スピン-スピン
と外部磁場の
相互作用

≦ ≦

①ダイヤモンド：同位体濃縮及びNV密度調整

パルス化により、高感度ηを得るには、コントラスト比C及びコヒー
レント時間T2

*（Hahn Echo法を使う場合はT2）を、大きくすることが
必要となる。

感度向上のため、 ①ダイヤモンド、 ②光、 ③マイクロ波、
④駆動回路 の４つの技術要素について、それぞれ検討を
行った。

コヒーレント時間T2
*の延伸には、ダイヤモンド結晶からの同位体

13Cの除去及び窒素濃度制御が必要である。

コヒーレント時間とは、スピンが量子的性質を発揮できる時間であり、
以下の3種類がある。Ramsey法によるDC磁場検知ではT2

*、Hahn 
Echo法によるAC磁場の検知ではT2がそれぞれ重要である。

矩形切り出し
コーナーキューブ

切り出し
CC_B

CC_A

窒素濃度は結晶の成長セクター
毎に大きく異なるため、窒素濃度
分布精査後、適切な部位を選定

3 mm

ダイヤモンドNV素材生成の流れ
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Rabi振動 Ramsey法

T2*=0.8 μsec

T2*=1.6 μsec

T2*=0.44 μsec
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同位体濃縮

高感度 蛍光量大

S. M. Graham et al., arXiv2004.01746に加筆

高感度 蛍光量大
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ダイヤモンドの不純物を制
御し、長コヒーレント時間を
実現
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合成したNVセンタ結晶

約8 mm

連続波によるODMR パルス化ODMR
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②光：励起光・蛍光収集効率の改善
コヒーレント時間を延伸するために、NVセンタの密度を低下させたこと
により、蛍光強度が低下してしまう。ダイヤモンドの形状を工夫するこ
とで、励起光・蛍光の収集効率の改善を図った。

③マイクロ波：共鳴周波数の多重化

コントラスト比を改善するために、3つの周波数を重畳し、14Nにより3つ
に分離した磁気共鳴（超微細構造）を同時におこす。

0

500

1000

1500

2000

2500

3000

3500

蛍
光
強
度

, n
A コーナーキューブ

平板

12C濃縮コーナーキューブ
12C濃縮平板(光学台)
天然比平板

レーザー

従来のダイヤ形状

正面から入った光が反射
して励起範囲が拡大
（蛍光量増大）
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蛍光量を2.5倍改善
（コントラスト比は1.6倍）
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従来 新規

単一周
波数のマ
イクロ波
を印加

3つの異な
る周波数
のマイクロ
波を同時
に印加

• 14Nによる超微細構造
のスピンの1つを操作

2.84ｘGHz

10MHz

• マイクロ波を±2.2MHz
でAM変調

• 14Nによる超微細構造
の3つを同時に操作

マイクロ波の多重変調なし

マイクロ波の多重変調あり

ODMR
波形

CW-ODMRへの適用例
コントラスト比は2～3倍向上
(超微細構造の数が増える副作用もある）

④駆動回路：パルスシーケンスによるスピン操作

Rabi振動

Ramsey法

Hahn-Echo法
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DC～低周波数外部
磁場を計測

DC～低周波数の
外部磁場をキャン
セルする測定法

NVのスピン回転速
度を計測
⇒πパルスの長さ
を決定
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基本パルスシーケンス 拡張パルスシーケンス

スピンエコー(πパルスでスピン位相を揃え直す）)を繰り返
すことで、低周波ノイズの低減が可能

周波数選択が可能であり、AC磁場の計測に最適

π

パルス長及び位相を調整されたマイクロ波をNVセンタに印加することで、スピンの量子状態を操作し、
低周波外部磁場のキャンセル、特定周波数磁場の選択、磁場感度の向上といった改善が可能である。

― 変調前
― 変調後
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磁界Bzによる
スピンの回転p/2パルス

光ポンピングで初期化
|0⟩

p/2パルス
光ポンピングで初期化

|0⟩ コヒーレントの消失

(1)コヒーレント時間T2*の測定

(2)DC磁場の測定

スピンが|1⟩からズレた分、

蛍光強度が増加

外部磁場でスピンが回転
し、 |1⟩からずれた分、蛍
光強度が増加

※シーケンスはコヒーレント時間T2*の間に行う必要がある。

B

p/2パルス
光ポンピングで初期化

|0⟩
外乱磁場等による回転

p/2パルス

pパルスにより
位相を180度回転

外乱磁場等による回転
（前半の回転のキャンセル）

待ち時間τ
この間にコヒーレント性減衰

待ち時間τ
この間にコヒーレント性減衰

外乱環境に影響
されずスピン減衰
の情報だけ残留。

(2)AC磁場の測定
反転したAC外部磁界による回転

（前半の回転を増幅）

※ただし、コヒーレント時間T2までの測定完了が必要。仮
にT2が100μ秒の場合、測定周波数は5 kHz以上となる。

待ち時間τを調整
し、AC磁場と同期
して測定すること
で、特定のAC磁場
を選択的に検知可
能

Ramsey法

（ブロッホ球）
スピンの量子状態を3次元空間で表すのに使用される。
Z軸：|0>（Ms=0の状態、蛍光有） と|1>（Ms=-1の状態、蛍光無）のどちらに近いかを示す。
X軸：|0>と|1>の重ね合わせを示す（X= |0> + exp(-iωt)|1>、ωは共鳴周波数 ）。
Y軸：|0>と|1>の位相が90°ずれた重ね合わせを示す（Y= |0> +i exp(-iωt)|1> ωは共鳴周波数 ） 。

Hahn-Echo法

|0⟩

|1⟩

(1)コヒーレント時間T2の測定

B

|1⟩

B

p/2パルス
光ポンピングで初期化

|0⟩
磁界Bによるスピンの回転

p/2パルス

pパルスにより
位相を180度回転

B

-B

待ち時間τ 待ち時間τ

マイクロ波

外部磁場

スピン操作による量子状態変化

|1⟩

T2*＝500 nsec

T2=5000 nsec

|1⟩

|1⟩

Ramsey法によるT2*の計測例

Hahn-Echo法によるT2の計測例

Hahn-Echo法によるAC磁場のタイミングチャート

-p/2パルス

-p/2パルス

達成感度
10 nT/ Hz 30 nT/ Hz

DC磁場の感度推定結果 AC磁場の感度推定結果

4つの技術要素に対する検討を経て、DC磁場感度で

30 nT/ Hz 、AC磁場感度で10 nT/ Hz の達成を確

認した。

今後の予定
ダイヤモンドの窒素濃度最適化及び拡張パルスシー
ケンスの活用による更なる感度の向上、電磁誘導の
周波数特性を活用した誤警報低減手法の検討、アレ
イ化による探知範囲の拡大といった、地雷探知に適し
たセンサモジュールの実現に向けた検討を進める。

No
ise

 le
ve

l
η 

(n
T)

rm
s

No
ise

 le
ve

l
η 

(n
T)

rm
s

Integration time t (s) Integration time t (s)

30 nT・s1/2/ t 10 nT・s1/2/ t 


