
各種装甲車両の開発・改修事業への応用が期待される、セラミックス等の軽量高機能材料を用い
た装甲構造の数値解析能力及び設計能力の向上を目的として、令和６年度に当室室員をフラウン
ホーファー研究機構エルンスト＝マッハ研究所（EMI）に派遣し、派遣先職員と共同でセラミック耐弾
板の数値解析精度向上のための研究1)を行った。
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・EMIの先行研究（侵徹試験）3)～5)を再現する数値解析モデルの構築を目的とした。
・侵徹試験は侵徹体の滞留現象を焦点としたものであった。滞留現象はセラミックス表面において
侵徹体が放射状に被侵食・流出する現象であり、侵徹力が激減することからその促進はセラミッ
クスの耐弾性能向上に大きく寄与する。滞留現象は着速が低い場合に強く発生（完全滞留）し、高
速になるにつれて限定的になり（部分滞留）、最終的にはほとんど発生しなくなる（完全侵徹）。ま
た、セラミックス前方にバッファ（緩衝）板を設置することで促進される。
・タングステン重合金(WHA) 侵徹体を均質圧延装甲(RHA) バックストップに張り付けた炭化ケイ素
(SiC)セラミックス耐弾板に衝突させ、着速約400m/s～1900m/sの広い速度域における侵徹長†等
を評価した。一部試験条件においては銅(Cu)バッファ板をSiC耐弾板前方に設置した。
・LS-DYNAを用いて、形状モデル、材料モデル（後述）、着速等を設定し、侵徹試験を再現した。
†セラミックスの様な脆性材料における侵徹長の計測が困難なため、RHAバックストップにおける侵徹長を計測し、評価に用いた。

フラウンホーファー研究機構エルンスト＝マッハ研究所（EMI）
フラウンホーファー研究機構は欧州最大の応用研究機関であり、ドイツ各地にEMIを含む75の研究
所を有する2)。エルンスト＝マッハ研究所（EMI）では主に高速力学（飛翔体、爆発物、レーザー）の
研究を実施しており、そのために必要な様々な設備及び高度な技術を有している。

先行研究（侵徹試験）における滞留現象のイメージ

侵徹試験写真（左）と数値解析モデル（右）

構成物詳細
侵徹体 ：WHA製、長さ90mm、直径6mm

（先端部テーパーあり）
耐弾板 ：SiC製、常圧焼結、厚さ25mm 
バックストップ：RHA製、厚さ40mm、最大2枚使用
バッファ板 ：Cu製、厚さ3mm

試験条件
着速 ：約400m/s～1900m/s
撃角 ：0°

侵徹試験条件

計算手法
有限要素数値解析（陽解法）

解析時間範囲
衝突時～衝突後300μs

要素分割数
侵徹体 ： 36，288
耐弾板 ：2,000,000
バックストップ：2,304,000
バッファ板 ： 230,208

数値解析条件

侵徹試験及び数値解析モデル
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・本展示においては侵徹試験２２条件から代表的な４条件
を抽出し、主にそれらについての結果を説明する† 。
・侵徹試験結果（高速度カメラ画像）と数値解析結果との比
較から、改良SiC材料モデルパラメタの使用により、き裂の
伝播及び飛散物のパターンのみでなく、バッファ板の変形
についても、良好な再現性が可能になることが分かった。
・例外として、バッファなし、着速525m/sのケースにおける
き裂の伝播の再現が良好でなかったが、これは低い着速・
小さい撃角・構造メッシュ等により生じた、対称面近傍にお
けるき裂が原因と推定され、非構造メッシュを用いる等の
改良によって再現能力が向上すると考えられる。
†実際には全２２条件の数値解析を実施している。

侵徹試験結果（高速度カメラ画像）と
数値解析結果との比較（衝突後300μs）

材料モデル
・WHA侵徹体、RHAバックストップ及びCuバッファ板（全て金属材料）の材料モデルには、Johnson-
Cook構成則及び破壊則を適用した。公開文献の情報を基にパラメタを設定した。
・SiC耐弾板の材料モデルには、Johnson-Holmquist-2(JH-2)構成則及び破壊則を適用した。公開
文献の情報6)を基にしつつも、いくつかの推定に基づいたパラメタの改良を行った。

SiC材料モデルパラメタの改良

①き裂の進展に大きな影響を及ぼす上に、文献によってその値
に大きなばらつきのある最大引張強度(Hydrostatic Tensile Limit,
HTL)について、先行研究において用いた耐弾板が耐弾グレード
でなく一般グレードのものであったことも考慮して、文献値よりも
低い値であると推定し、当該パラメタを低く設定した。
②弾着点近傍で閉じ込められた残留物のロッキング効果により、
破壊された耐弾板の強度低下がある程度抑制されると推定し、
耐弾板の破壊時強度曲線におけるパラメタ(B,M)を、無傷時強度
曲線の対応するパラメタ(A,N)に近い値に設定した。

高速度カメラ画像
数値解析結果

（文献SiCパラメタ）
数値解析結果

（改良SiCパラメタ）

テスト
番号

バッファの
有無

着速

[m/s]
離軸角

（ピッチ）
[°]

離軸角
（ヨー）
[°]

13053 なし（bare） 525 0.3 0.9
13059 なし（bare） 1356 -0.3 0.1
13055 あり

（w/buffer）
1019 -1.7 0.6

13056 あり
（w/buffer）

1678 -0.4 -0.6

代表的な試験条件４件

侵徹試験結果（高速度カメラ画像）と
数値解析結果（改良SiCパラメタ）との比較（衝突後16～200μs）

侵徹試験結果（高速度カメラ画像）と数値解析結果との比較
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まとめ・今後の目標
・セラミックス耐弾板に対する侵徹試験の再現のために、一般で入手可能な材料モデルのみを用
いて数値解析モデルを作成した。
・特にセラミックス耐弾板に対しては、いくつかの推定に基づく材料モデルパラメタの改良を行い、
オリジナルのパラメタよりも再現能力を飛躍的に向上させた。
・数値解析モデルは、一部例外はあるものの、広範な着速域においてセラミックスのき裂進展、デ
ブリの飛散、滞留現象及び侵徹長の良好な再現を同時に実現した。
・バッファ板による滞留現象の促進については再現できなかったが、侵徹体の材料モデルパラメタ
も含めた複数のパラメタの最適化を行うことで、再現できる可能性がある。
・効率的な複数のパラメタの最適化を行う際に、機械学習アルゴリズム及びそれ等を用いた数値
解析による逆解析（逆最適化）が有効であると考えられる。
・本研究によって得られた知見等を活かして、自衛隊における装甲車両の装甲構造の数値解析
能力及び設計能力の向上に努める。
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・侵徹試験結果（X線画像）と数値解析結果との比較から、侵徹体の後端位置、デブリ飛散やバッ
ファ板の変形についても、良好に再現できていることが分かった。
・全２２条件を用いた比較から、侵徹長においても数値解析シミュレーション結果は良好な再現性
を示すことが分かった。例外として、着速1500m/s～1700m/sにおけるCuバッファ板による滞留現
象の促進については再現できていなかったものの、SiC耐弾板の材料モデルパラメタの最適化を
行う余地があるとともに、WHA侵徹体の材料モデルについてもSiC耐弾板と同様に改良を行うこと
で同現象を再現できる可能性がある。

侵徹試験結果（X線画像）と
数値解析結果（改良SiC）との比較

侵徹試験結果（断面観察）と
数値解析結果（改良SiC）との比較

侵徹試験結果（侵徹長（DOP））と
数値解析結果（改良SiC）との比較

侵徹試験結果（X線画像及び侵徹長）と数値解析結果との比較


