研究成果報告書 熱制御の高度化による革新的遮熱 コーティングシステムの基盤構築

令和6年5月

一般財団法人ファインセラミックスセンター

本報告書は、防衛装備庁の安全保障技術研 究推進制度による委託業務として、一般財団 法人ファインセラミックスセンターが実施し た令和5年度「熱制御の高度化による革新的 遮熱コーティングシステムの基盤構築」の成 果を取りまとめたものです。

1. 委託業務の目的

本研究では、輻射熱反射機能と超低熱伝導性を併せ持つ Thermal barrier coating(以下「TBC」という。)システムを創成し、現行の YSZ-TBC システムの遮熱性を凌駕することを 目指す。ここで、比較対象となるベンチマークの YSZ-TBC システムの構成は、基板側から順 に、Ni 基超合金基板、NiCoCrAlY 結合層、電子ビーム物理蒸着法(以下「EB-PVD」とい う。)により形成した羽毛状多孔質セグメント構造を有する 6~8 mass% Y₂O₃ 部分安定化

- ZrO₂(以下「YSZ」という。)トップコートからなる。以下に最終目標を示す。
- (1) 輻射熱反射と低熱伝導化に有効なトップコート材料とその構造を決定する。また、候補材の 材料物性を用いて、高い輻射熱反射性と低熱伝導性を併せ持つ材料群を示すマップを作成す る。
- (2) YSZ に比べて遮熱性に優れるセグメント構造のトップコートを形成する要素技術(ハイエントロピー化(以下「HE化」と示す)及び周期多層化)の確立を目指す。
- (3) 創生した TBC システムのトップコートの熱伝導率は YSZ の 60 %以下であることを目指 す。
- (4) 創生した TBC システムのトップコートの近赤外~中赤外線領域の平均反射率は YSZ の 1.4 倍以上であることを目指す。
- (5) 創生した TBC システムに温度勾配を付与したバーナー加熱試験により、トップコートの反射により軽減された熱流束が YSZ-TBC システムの 80%以下に抑制できることを目指す。
- (6) バーナー加熱試験により、創生した TBC システムの短時間での耐熱サイクル特性が YSZ-TBC システムに比べて同等以上であることを目指す。

2. 研究開始時に設定した研究目標の達成度

- (1) 輻射熱不透過(高放射率)と低熱伝導化に有効なトップコート材料として、HE化R₂TiO₅(立 方晶系,六方晶系)を決定した。また、任意の多元素組成における結晶系と放射性能を予測 するための機械学習を用いた手法を確立し、予測の妥当性をモデル実験により実証した。さ らに、この手法を用いて超低熱伝導と高放射率を併せ持つHE化R₂TiO₅を発見した([©])。
- (2) YSZに比べて遮熱性に優れるセグメント構造のHE化R₂TiO₅トップコートを形成する要素技術を確立した(〇)。
- (3) セグメント構造を有する創生トップコート(HE化R₂TiO₅層)の700℃の熱伝導率がYSZ焼結 体の33%となり、開発目標値(60%以下)を大きく凌駕した(◎)。
- (4) 創生トップコートの近赤外~中赤外線領域の反射率は22%であり、YSZ焼結体と同程度であった(×)。
- (5) バーナー加熱試験終了間際(熱サイクル数:190回-200回)の創成TBCシステムの平均熱流 束が、ベンチマークYSZ-TBCシステムに対して88%であった。また、TBCシステムの伝熱 計算により、熱流束80%以下を可能とするHE化R₂TiO₅トップコートの放射率と層厚条件を 予測するとともに、本研究で発見した上述の超高放射率の等モル6R-六方晶系R₂TiO₅をトッ プコートに適用することで目標達成することを予測した(△)。
- (6) 創生TBCシステムの200回の耐熱サイクル特性はベンチマークYSZ-TBCシステムに比べて著しく優れる(◎)。つまり、創成TBCシステムの熱流束と有効熱伝導率は、熱サイクル数の増加に対してほとんど変化しないが、ベンチマークYSZ-TBCシステムのそれらは上昇し、遮熱性が明らかに低下した。また、バーナー加熱試験前後のTBC界面せん断強度比(τ_{after}/τ_{before})は、創生TBCシステムが82%、ベンチマークYSZ-TBCシステムが24%であり、HE化R₂TiO₅薄層をトップコートに付与することで、TBCの損傷劣化を著しく抑制できることを示した。

3. 委託業務における研究の方法及び成果

3.1 トップコート材料の探索

航空機エンジン等の高温の燃焼ガスに曝される遮熱コーティングシステムにおいては、その遮熱性能が燃焼ガス中の輻射熱の影響を受けると考えられるが、遮熱層の光学特性と遮熱 性能の関係は明らかでない。そこで、トップコートの光学特性(透過・放射・反射)を考慮 した伝熱モデル(図1)を基に、水素燃焼バーナー加熱条件のときの伝熱計算を実施した。 トップコートの熱伝導率、光学特性とTBCシステムの遮熱性の関係を図2に示す。図中の〇 印の領域は、所定時間曝露した後の多孔質セグメント構造を有するYSZトップコートの光学 特性を示す。近赤外~中赤外線領域において、YSZは物質としての透過率が高く、反射率や 放射率が低い。しかし、多孔質YSZトップコートの場合は、トップコート内を透過する電磁 波の一部が、トップコート内の気孔や粒界により散乱されて、その一部が系外に放射される ために見掛け上の反射率が高くなる。図2より、トップコートの熱伝導率を低下させること により、熱流束が大きく低下するが、その反面、表面温度が高くなることがわかる。一方、 トップコートの放射率を高くすることにより、トップコート表面温度の上昇を効果的に抑え られる。表面温度の上昇は、トップコートの焼結に伴う緻密化により熱伝導率が上昇するた め、遮熱性が低下する。したがって、TBCシステムの遮熱性能を向上させるには、トップコ ートを低熱伝導かつ高放射率にするのが有効である。

4.2 トッフコートの熱伝導率、光字符性
と TBC システムの遮熱性の関係

この予測の妥当性を検証するために、ベンチマーク4YSZ-TBC試験片のYSZトップコート 表面を高放射率既知(0.94)の黒体塗料を塗布した場合としない場合で、燃焼ガス環境下の 遮熱性を評価した。図3に使用した水素燃焼バーナー加熱試験装置の模式図を示す。TBC試 験片のトップコート表面を水素/酸素の混合燃焼ガス環境(H₂/O₂ガス流量比=2)に曝すと ともに、基板裏面を水冷することで、試験片厚さ方向に温度勾配をつけて、トップコートの 放射率変化と熱流束の関係を把握した。黒体塗料塗布有・無のベンチマークYSZ-TBCシス テムに対して、H₂流量と熱流束の関係を図4に示す。

図 3 水素燃焼バーナー加熱試験 装置の模式図

図 4 ベンチマーク YSZ-TBC システムの 遮熱性に及ぼすトップコート表面への 黒体塗料塗布の効果

H₂流量が多い程、つまり、トップコート表面温度が高い程、熱流束が増加する。また、何れの燃焼条件においても、黒体塗料を塗布したトップコート表面の熱流束が、塗布無しの場合よりも明らかに低い。このことは、トップコート表面の放射率を高めることがTBCシステムの遮熱性向上に有効であるという予測が妥当であることを示す。

本研究開始前の段階で、酸素欠損型蛍石構造を有する立方晶Yb₂TiO₅がYSZを凌駕する低 熱伝導性を有することを発見し、本研究においてYbサイトをHE化することにより、さらな る低熱伝導化と高放射率化を図ることを期待した。図5に一例として等モル4R(4種類の元素 を等モル量添加)のHE化 R_2 TiO₅の熱伝導率と熱膨張係数の温度依存性を示す。図5より、本 研究で注目した R_2 TiO₅は、結晶系の違いによらず何れもYSZよりも超低熱伝導であり、かつ、 YSZと同等の熱膨張係数であることがわかった。したがって、 R_2 TiO₅は、熱機械的特性の観 点からはYSZ-TBCの代替が可能であると考えられる。

また、図6に10種類の等モル4R-R₂TiO₅の結晶系と平均Rイオン半径の関係を示す。図中の 青線は1R-R₂TiO₅の相境界を示す。図6より、HE化することで相境界線が横軸に対して垂直 方向に近づく、つまり、結晶構造が温度変化に対して一定となる傾向にあることがわかった (結晶構造の安定化)。また、六方晶系の領域が1R-R₂TiO₅に対して直方晶側に拡大するこ とから、HE化は六方晶系の安定化に特に有効である。表1に等モル4R-R₂TiO₅の結晶相と配 置エントロピーの関係を示す。表1より、六方晶系4Rの配置エトロピーの増加率(対1R)は その他の結晶系より大きい傾向にあることから、HE化による六方晶系の安定化は、この配 置エントロピーの増加率が大きくなることが関与した可能性がある。

図5 R, TiO, の熱伝導率と熱膨張係数の温度依存性

図 6 等モル 4*R*-*R*₂TiO₅の結晶系と平均*R*イオン半径の関係 (1*R*-*R*₂TiO₅の相境界*を空色で示す) *Y. F. Shepelev et al., Inorganic Materials, 44, 12, 1354–1361 (2008)

結晶相	<u>++ ヽ</u> プ॥	P/Ti	$\Delta S_{\rm conf}/R$ [par atom]			
空間群			Total	Cations	Oxygens	
立方晶 <i>Fm</i> 3m (225)	Yb ₂ TiO ₅ -1	1.9870	0.5763	0.2391	0.3372	
	Yb ₂ TiO ₅ -0	1.9956	0.6656	0.2388	0.4268	
	Yb ₂ TiO ₅ -2	2.0747	0.7300	0.2369	0.4931 丿	
	等モル4R_No.9-1	1.9314	0.9174	0.5823	0.3351	
	等モル4R_No.9-2	2.0295	0.9256	0.5865	0.3391 ∫	
六方晶 <i>P</i> 6 ₃ / <i>mmc</i> (194)	Dy ₂ TiO ₅ -1	1.9185	0.2559	0.1356	0.1203	
	等モル4R_No.6-1	1.9171	0.7205	0.5433	0.1773	
直方晶 <i>Pnma</i> (62)	等モル4R_No.18-1	1.9043	0.3466	0.3466	-	

表 1	R_2 TiO ₅	の結晶相	と配置	エント	\Box	Ŀ°−	変化	の阝	氡係
-----	------------------------	------	-----	-----	--------	-----	----	----	----

また、原子分解能STEM-EDS分析と第一原理計算を組み合わせた等モル4*R*-*R*₂TiO₅(立方 晶、六方晶、直方晶)の結晶構造解析を実施することで、結晶中のカチオンの分散状態(原 子サイト毎の化学組成と原子位置)を明らかにした。一例として、図7に等モル4*R*-六方晶系 *R*₂TiO₅(R/Ti<2)の結晶構造の解析結果を示す。初めに、STEM-EDSを用いた元素マッピ ングより、原子サイト毎のカチオンの化学組成を取得した。また、第一原理計算を用いて同 結晶構造に含まれる原子変位を抽出した。そして、これらの情報を用いて、別途測定した放 射光XRDパターンに対してリートベルト解析することで、多元素化した六方晶系に対して新 しい結晶構造モデルの決定に成功した。

図 7 原子分解能 STEM-EDS 分析と第一原理計算を組み合わせた
 エントロピー安定化酸化物の結晶構造解析の例
 [等モル 4*R*-六方晶系 HE 化 *R*₂TiO₅]

本研究で注目するトップコートの波長帯は、波長 0.5~2.5µm の近赤外~中赤外線領域であ り、1700℃の黒体輻射熱エネルギーに対する割合は 64%に相当する。この波長帯におけるベン チマーク YSZ 焼結体の光学特性(室温)を図 8 に示す。全反射率と全透過率は、積分球を用い た紫外可視分光器を使用して計測した。YSZ 焼結体の厚さが低下すると透過率が増加し、その 反対に反射率が低下した。これは、近赤外~中赤外線領域の波長と同等以上の大きさの結晶粒子 数(粒界面積)が膜厚の減少に伴い低下したため、粒界面における Mie 散乱の効果が低減した からであると推察される。

なお、図8左下中に創成トップコートの併記反射率の開発目標線(YSZ焼結体の反射率の1.4 倍以上)を示した。

図 9 に、等モル 4*R*-HE 化 R_2 TiO₅ 焼結体(R/Ti<2)の光学特性(室温)を示す。試験片の厚 さは 1mm である。また、図 10 に、その光学特性の厚さ依存性を示す。HE 化 R_2 TiO₅の平均吸収 率(放射率)は YSZ に比べて著しく大きく、その反対に平均反射率は YSZ 焼結体と同程度であ る。

図 8 ベンチマーク(4mol%YSZ 焼結体)の光学特性(R.T.)

図 9 R₂TiO₅焼結体の光学特性 (R/Ti<2,厚さ=1 mm, R.T.)

図 10 R₂TiO₅ 焼結体の光学特性の厚さ依存性(R/Ti<2)

図 11 に、等モル nR-HE 化 R_2 TiO₅の結晶系予測のための機械学習モデルの概念図を示す。実 験データや文献データ、並びに、状態図データベースを用いた機械学習により、任意のR元素 種数と化学組成のときの R_2 TiO₅の結晶系を予測する手法を構築した。図 12 に、機械学習により 予測した等モル 4R-HE 化 R_2 TiO₅の結晶系と平均Rイオン半径の関係を示す。図中の点線は、 1R- R_2 TiO₅の相境界を示す。図 12 の予測図は、図 6 の実験で決定した状態図と良い対応を示し た。

また、等モル nR-HE 化 R₂TiO₅に対して、 R^{3+} イオンのエネルギー準位図(Dieke diagram)を 基に、赤外線~中赤外線域の放射性能を順位付けする計算手法を構築した。そして、これらの結 晶系と放射性能に関する予測が妥当であることをモデル材を用いて実証した。例えば、<u>等モル</u> <u>6R-六方晶系 HE 化 R₂TiO₅の平均放射率は約 80 %(YSZ の約 20 倍)</u>であり、トップコート素材 として極めて高いポテンシャルを有することを見出した。

以上より、<u>トップコートに求める光学特性を研究開始当初の"反射率向上"から"放射率向</u> 上"に変更したものの、遮熱性向上の観点から得られた成果は、開発目標(1)を十分に達成した と判断した。

図 12 等モル 4*R*-*R*₂TiO₅の結晶系と 平均 *R*イオン半径の関係 (1*R*-*R*₂TiO₅の相境界を点線で示す)

図 11 等モル n*R*-*R*₂TiO₅の結晶系予測のため の機械学習モデルの概念図

一般に酸化物膜が高温の酸素ポテンシャル勾配(d μ o)に曝された場合、Gibbs-Duhemの熱 力学的関係式に従い酸化物イオンの内方向拡散、カチオンの外方向拡散に対する駆動力が生 ずる。また、結晶中の物質移動は結晶内の欠陥濃度に強く依存する。 R_2 TiO₅においても、電 気的中性条件を満足するためにR/Ti比の変化に伴い結晶内に格子欠陥が導入されるが、この ような欠陥が高温d μ o下に曝された R_2 TiO₅膜中の物質移動に及ぼす影響については未だ明ら かでない。しかも、多元素化したRイオンの易動度に違いがある場合は、膜厚方向の化学組 成が大きく変化することも懸念される。本研究においては、成膜プロセスに供試した等モル 4R-立方晶系 R_2 TiO₅ウェハとYb₂TiO₅ウェハ用いて、高温d μ o下における酸素透過係数の測定 や微細組織観察等により、ウェハ中の物質移動機構を解析した。その結果、いずれのウェハ においても、酸素透過は酸化物イオンの体拡散により進行した。また、高温d μ o下において、 カチオンはほとんど移動しないため組織安定性に極めて優れることがわかった。さらに、化 学量論組成からズレている場合(R/Ti \neq 2)、酸化物イオンの移動は、Rイオンの価数変化を 伴うことを示唆した。

3. 2 TBCプロセス技術の確立

(1) HE化R₂TiO₅セグメントの形成技術

本研究では、ベンチマークYSZ-TBCシステムの直上に、等モル4R-立方晶系R₂TiO₅層をト ップコートとして付与した積層TBCシステムを形成する(図13)。この積層構造のメリット としては、i)高い実績を有する高靭性YSZ-TBCシステムの表面改質であるため、本研究成果 の展開が容易であること、ii) HE化R₂TiO₅の薄膜化による成膜コストの大幅削減が挙げられ る。

また、*R*₂TiO₅を構成する単純酸化物の蒸気圧が大きく異なるため、図13に示したダブル電 子ビームPVD法により、2つのインゴット(等モル4*R*-*R*₂O₃, TiO₂)を独立に溶融・蒸発させ ることで、化学組成を精密制御した*R*₂TiO₅層を形成した。得られた積層TBCシステムの断面 組織のSEM像を図14に示す。下地t'-YSZ層のセグメントと立方晶系*R*₂TiO₅層のセグメントが 連続的に繋がった多孔質組織になっている。後述する開発目標(5)(6)の達成度を勘案し、<u>開</u> 発目標(2)のトップコートを形成する要素プロセス確立は達成したと判断した。

図 13 電子ビーム PVD 法による TBC 遮熱層の形成

図 14 創成 TBC システムの断面 SEM 像(等モル 4R-立方晶系 HE 化 R₂TiO₅/YSZ)

図15に、レーザーフラッシュ法により測定した、トップコートと焼結体の熱伝導率の温度 依存性を示す。セグメント構造を有する創生トップコート(HE化R₂TiO₅層)の700 ℃の熱伝 導率はYSZ焼結体の33%となり、開発目標(3)の60%以下を大きく凌駕することを実証した。

図16に、電子ビームPVDで成膜したTBCシステム表面(As-coating)の反射率を示す。 ベンチマークYSZ-TBCシステム(黒線)の平均反射率は62%である。この値が同等厚さの YSZ焼結体(図10参照)の約3倍であるのは、透過した電磁波の一部が層内の気孔により散 乱されたり、下地結合層界面で反射したりして、最終的にYSZ表面から放射されたためと考 えられる。また、ベンチマークYSZ-TBCシステムの直上に反射率の小さいHE化R₂TiOs薄層 を形成することで、反射率が低下するものの、HE化R₂TiOs焼結体の値(図10参照)に比べ て高いのもYSZと同じ理由である。そこで、基板からの反射の影響を除くために、カーボン 基板上にHE化R₂TiO₅薄層を形成したものに対して反射率を計測した。その結果、HE化 R₂TiO₅薄層の反射率は、同じ厚さのYSZ焼結体と同程度であったことから、反射率の開発目 標(4)の1.4倍以上は未達であった。

なお、3.1項で述べた様に、TBCの遮熱性向上に重要な光学特性は"高反射率"でなく "高放射率"であることから、この開発目標が未達であっても何ら遮熱性の低下をもたらす ものでない。

22

5000

75

(2) 周期多層構造セグメントの形成技術

研究開始1年目と2年目は、トップコートの"反射率向上"を目指した。以下に検討した結 果について述べる。

近赤外線〜中赤外線領域の輻射熱を反射する機能を発現させる方法の一つとして、屈折率 差が大きく異なる2種類の耐熱性酸化物をサブµmの厚さで交互に積層させ異相界面で反射さ せる方法である。本研究では、研究開始1年目に周期積層構造形成のための「回転シャッタ ーシステム」を導入し既存のダブル電子ビームPVD装置に組み込み、次年度にわたり [Yb₂TiO₅-Yb₂O₃]_n周期多層セグメント形成のための要素プロセスを検討した。その結果、高 温成膜時に異相界面におけるカチオンの相互拡散が進行するため、傾斜組成の異相界面を有 するセグメントが形成された。傾斜組成の界面においては屈折率が緩やかに変化するため、 異相界面において大きな屈折率差を得ることができないため、設計どおりの輻射熱反射性能 を発現することが困難となる。しかも、3.1項で述べた様に、高反射率化は遮熱性の向上 に寄与しないことが明らかになったことから、<u>周期多層セグメントの開発を研究開始2年目</u> 終了時点で中止した。

3.3 バーナー加熱による遮熱特性と耐熱サイクル特性の評価

(1) バーナー加熱試験装置系の改良と表面温度測定方法の開発

開発目標(5)(6)に関して、温度勾配下に曝されるTBCシステムの熱流束や遮熱層の有効熱 伝導率を正しく評価するためには、燃焼ガスによるトップコートの加熱環境や基板裏面の冷 却環境を試験中一定にするだけでなく、トップコートの表面温度を正確に計測することが不 可欠である。そのため、バーナー加熱試験装置の改良及びTBCシステムの表面温度の測定方 法の開発を行った。また、本項の実施に当たっては、EB-PVD法によりYSZをトップコート に形成したTBCシステム(以下、ベンチマークYSZ-TBCシステムという)を用いた。

(1-1) バーナー加熱試験装置の改良

バーナー加熱試験装置における基板裏面の冷却は、チラーによる水冷により実施している。チラーの水温を20±0.1 ℃に制御することで、冷却側の温度制御の安定性を図った。その結果、ベンチマークYSZ-TBCシステムのトップコート表面と基板内部温度が測定中安定である試験環境を実現した。

(1-2) 表面温度の測定方法の開発

本研究では、、ベンチマーク YSZ-TBC システムの表面温度を「放射温度計」を用いて測定した。その場合、i) TBC システムの遮熱層(以下「トップコート」という。)が温度測定に使用するセンサー測定波長(近赤外線波長)に対して、透過性があること、ii) 水素燃焼バーナー火炎(水蒸気を含む)がセンサー測定波長を吸収することが、正確に温度を測る上で問題であった。

これらの問題を以下で説明する方法により解決した。

i)トップコートの近赤外線波長の透過性の問題解決(一次補正、図 17(a))

トップコートの近赤外線波長の透過性の問題については、トップコート表面に放射率 が既知である黒体塗料(放射率=0.94)を塗布することで、測定波長に対して表面がほぼ 完全に不透明になる測定状態を実現した。なお、一次補正式は以下の手順で導出した。 同じバーナー加熱条件、同試験体にてトップコート表面に黒体塗料を塗布しない場合の 見かけ上の表面温度(Tysz, =0.94)と黒体塗料を塗布した場合の表面温度(Tblackpaint)を 測定し、補正式を導出する。ここで同じバーナー加熱条件時の黒体塗料有無の温度を関 係付けるのではなく、同じ熱流束における黒体塗料有無の温度を関係付けることが重要 である。 ii) 水素燃焼バーナー火炎による近赤外線波長の吸収の問題解決(二次補正、図 17(b)) 水素燃焼バーナー火炎による近赤外線波長の吸収の問題については、TBC システムの 基材である IN738LC 基材の外挿界面温度を算出することで解決した。なお、二次補正式 は以下の手順で導出した。バーナー加熱試験により IN738LC 基材に取付けてある 3 つの 熱電対温度と基材の熱伝導率から外挿表面温度(Textra)を算出する。更に同測定にて黒 体塗料を塗布した放射率=0.94 時 IN738LC 基材表面(Tblackpaint)を放射温度計により測定 し、補正式を作成する。ここで、放射温度計により測定した表面温度は水素燃焼バーナ ー火炎の影響を受けている。

以上より、一次補正・二次補正を用いることで、黒体塗料を塗布していない表面温度 を放射温度計により測定することで、トップコートの近赤外線波長の透過性の問題及び 水素燃焼バーナー火炎による近赤外線波長の吸収の問題を解決したトップコート表面の 実温度を導出できた。但し、トップコートの厚さ・材質が変わった場合は、その都度一 次補正を導出する必要がある。

(b) 二次補正

図 17 バーナー加熱試験におけるトップコート表面温度の二段階補正

(2) TBC システムの遮熱性と耐熱サイクル性の評価

図18に、TBCシステムのバーナー加熱によるトップコート表面温度T。とYSZ層-結合層 界面温度T_{cb}の熱サイクル数依存性を示す。バーナー加熱条件は、H₂流量=21SLMであり、H₂ とO₂ガス流量比は2である。1回の熱サイクルは、図3中のシャッター[開]状態を180s間、続 いてシャッター[閉]状態を180s間とし、それを200回繰り返した。また、トップコート表面 温度T_cは、上述の2段階補正により求めた値であり、界面温度T_{cb}は、基板内に配置した3本 の熱電対より計測した温度勾配の外挿値である。

図18より、ベンチマークYSZ-TBCシステムのT_eは熱サイクル数の増加に伴い低下するの に対して、T_{eb}は反対に増加し、熱サイクル数100回以降は両温度ともほぼ一定となった。一 方、創生TBCシステムのT_eは熱サイクル初期に急激に上昇するものの、熱サイクル数10回程 度以降はほぼ一定となった。また、創生TBCシステムのT_{eb}は熱サイクルを与えてもほとん ど変化せず一定であった。

創成TBCシステムの定常状態のT_cはベンチマークシステムに比べて約80℃高くなったが、 反対に、T_{cb}は約60℃低くなった。

図19に、TBCシステムの熱流束と遮熱層の有効熱伝導率の熱サイクル数依存性を示す。 TBCの遮熱性を評価する上で最も重要なパラメータは熱流束である。ベンチマークYSZ-TBCシステムの熱流束と遮熱層の有効熱伝導率は、熱サイクル数の増加に伴い明らかに増大 し、熱サイクル数100回以降はほぼ一定となった。一方、創生TBCシステムの熱流束は熱サ イクルを与えてもほとんど変化せず一定であり、遮熱層の有効熱伝導率も熱サイクル初期に 急激に低下するものの、熱サイクル数10回程度以降はほぼ一定となった。また、創生TBCシ ステムの定常状態の熱流束はベンチマークYSZ-TBCシステムに対して12%も低い値となっ た。ベンチマークYSZ-TBCシステムの直上に僅か25umのHE化R₂TiO₅層を付与しただけで、 熱流束が大きく低下するのは驚くべき事象である。また、図18, 19より、ベンチマーク YSZ-TBCシステムの遮熱性が熱サイクル数の増加に伴い明らかに低下しているのに対して、 創生TBCシステムはほとんど変化せず、優れた耐熱サイクル性を維持することがわかった。 実際に、バーナー加熱試験前後のTBC界面せん断強度比(_{tafter}/tbefore)は、創生TBCシステ ムが82%、ベンチマークYSZ-TBCシステムが24%であり、HE化R₂TiOs薄層をトップコート に付与することで、TBCの損傷劣化を著しく抑制できることがわかった。創成TBCシステム のT_{cb}がベンチマークシステムよりも約60℃も低かったことからも、金属結合層の酸化に伴 うTGO層の成長を効果的に抑制したことが関与したものと推察される。以上より、開発目標 (6)の耐熱サイクル特性がYSZ-TBCシステムに比べて同等以上は達成したものと判断した。

図 18 トップコート表面温度とトップコートー結合層界面温度の熱サイクル数依存性

図20に、創成TBCシステムを構成するR₂TiO₅トップコートの放射率、層厚さ、並びに、 ベンチマークYSZ-TBCシステムに対する熱流東比の関係を示す。等モル4R_立方晶系HE化 R₂TiO₅トップコート(厚さ=25µm)を用いた創生TBCシステムの熱流東は88%であった。 放射率0.8、反射率0.2の等モル6R_六方晶系R₂TiO₅をトップコートに用いて熱流東80%以下 (開発目標(5))を達成するためには、現行のベンチマークYSZ-TBCシステム上に、約0.1 mmのR₂TiO₅層を付与するのがよいことを予測した。以上より、開発目標(5)達成のための TBC層厚構造とトップコート素材を提案したことから、現時点において<u>開発目標(5)の</u>熱流 東がYSZ-TBCシステムの80%以下に抑制<u>を達成する目途を得ていると判断</u>した。

図 19 熱流束と遮熱層の有効熱伝導率の熱サイクル数依存性

図 20 創成 TBC システムを構成する *R*₂TiO₅トップコートの放射率, 層厚さ, 並びに, ベンチマーク YSZ-TBC システムに対する熱流東比の関係

3. 4 プロジェクトの総合的推進

- ・定期的に連絡会を行い、プロジェクト全体の進捗状況を確認した(計15回開催)。
- ・個別テーマ内で得られる情報(サンプルの材料履歴、特性データ等)を代表機関のJFCCにて 一元管理し共有化することにより、研究業務の効率化を図った。
- ・研究成果については、知的財産権を確保した上で、国内での学会に積極的に発表するととも に、JFCC-HP等を通じて広く社会に情報発信し、産業界への普及に務めた。

4. 委託業務全体の成果

4. 1 計画時に想定していなかった成果(副次的成果)や、目標を超える成果 研究目標(1)(4)

- TBCシステムの遮熱性向上に必要なトップコートの光学特性は、高反射率ではなく高放射率 であることを、トップコートの光学特性を考慮したバーナー加熱条件の伝熱計算により予 測した。また、モデルTBCシステム(黒体塗料を用いてトップコート表面の放射率を変化) を用いたバーナー加熱試験により、この予測が妥当であることを実証した。
- ・等モル4R-HE化R₂TiO₅焼結体の近赤外~中赤外線域の平均放射率は、YSZ焼結体の約10倍であり、特に、等モル6R-六方晶系HE化R₂TiO₅焼結体は約20倍の高放射率を有することを見出した。
- ・原子分解能STEM-EDS分析と第一原理計算を組み合わせた等モル4R-HE化R₂TiO₅(立方晶、 六方晶、直方晶)の結晶構造解析を実施することで、結晶中のカチオンの分散状態(原子 サイト毎の化学組成と原子位置)を明らかにした。例えば、六方晶系HE化R₂TiO₅に対して、 新たな結晶構造モデルを提案することができた。
- ・HE化 R_2 TiO₅はYSZよりも超低熱伝導、かつ、YSZと同等の熱膨張係数であるため、熱機械 的観点からはYSZ-TBCの代替が可能であることがわかった。
- 研究目標(2)
- ・PJ開始当初に計画していた、「周期多層構造を有する遮熱層の異相界面の屈折率差を利用して、遮熱層の反射率を高めてTBCシステムの遮熱性を向上させる」取り組みは、上述した 伝熱計算の結果等より、遮熱性能の向上に対して「不適」と判断し、PJ開始2年度終了時 点で中止した。

4.2 研究課題の発展性(間接的成果を含む)

- ・近年では、エンジン内に取り込まれた火山灰や砂等がTBCが施された高温部品のトップコ ート表面に堆積・溶融し、TBCを激しく損傷させることが問題となっている。この堆積・溶 融物の主成分がCa-Mg-(Fe)-Al-Si-Oであることから、それを総称して(CMAS)と呼ぶ。こ のCMAS損傷は、気候変動による干ばつや地球温暖化による気温上昇で砂漠化が進行するた めに、今後、ますます顕在化することが予想されている。上述したように、トップコートの 低熱伝導化は、部材内に流入する熱エネルギーを効果的に下げることができる反面、トップ コート表面温度の著しい上昇をもたらす。その結果として、化学反応が関与するCMAS損傷 が指数関数的に促進される。したがって、トップコートの高放射率化は表面温度の上昇を抑 えるため、耐CMAS性の向上にも有効であると考えられる。
- トップコート表面より放射される熱エネルギーを積極的に燃焼ガスに吸収させることができれば、タービン部を通過する燃焼ガスの温度低下を抑制することになるため、エンジン燃費のさらなる向上のためのTBCの新規設計技術になると期待される。
- 本研究において、酸化物のHE化により発現する機能の本質を理解するためには、原子分解 能STEM-EDS分析と第一原理計算を組み合わせた局所構造解析が極めて有効であることを 示した。

4.3 研究成果の発表・発信に関する活動

該当なし。

5. プロジェクトの総合的推進

5.1 研究実施体制とマネジメント

- ・定期的に連絡会を行い、プロジェクト全体の進捗状況を確認した(計15回開催)。
- ・個別テーマ内で得られる情報(サンプルの材料履歴、特性データ等)を代表機関のJFCCにて 一元管理し共有化することにより、研究業務の効率化を図った。
- ・研究成果については、知的財産権を確保した上で、国内での学会に積極的に発表するととも に、JFCC-HP等を通じて広く社会に情報発信し、産業界への普及に務めた。

5.2 経費の効率的執行

JFCC実施課題「AI的画像解析によるオペランド電子顕微鏡計測技術に関する研究(2020-2024)」にて導入した電子顕微鏡を活用することで、HE化 R_2 TiO₅中のカチオンの分散状態を 原子レベルで解明するとともに、六方晶系 R_2 TiO₅に対して新たな結晶構造モデルを提案するこ とができた。

6. まとめ、今後の予定

6.1 まとめ

- (1) トップコート材料の探索
- ・TBCシステムの遮熱性向上に必要なトップコートの光学特性は、高反射率ではなく高放射率 であることを、TBCシステムのバーナー加熱条件の伝熱計算とモデル実験により実証した。
- ・教師データの取得を介して、輻射熱不透過(高放射率)と低熱伝導化に有効なトップコート 材料は、HE化R₂TiO₅(立方晶系、六方晶系)が有望であることを確認した。
- ・任意の多元素組成における結晶系と放射性能を予測するための機械学習を用いた手法を確立 し、予測の妥当性をモデル実験により実証した。また、この手法を用いて超低熱伝導と高放 射率を併せ持つ等モル6R-六方晶系R₂TiO₅を発見した。

(2) TBCプロセス技術の確立

- ・YSZに比べて遮熱性に優れるセグメント構造のHE化R₂TiO₅トップコートを形成する要素技術 を確立した。
- ・セグメント構造を有する創生トップコート(HE化R₂TiO₅層)の700℃の熱伝導率がYSZ焼結 体の33%となり、開発目標値を大きく凌駕した。
- ・創生トップコートの近赤外~中赤外線領域の平均反射率は22%であり、YSZ焼結体と同程度 であった。
- (3) バーナー加熱による遮熱特性と耐熱サイクル特性の評価
- ・バーナー加熱試験終了間際(190-200回)の平均熱流束がベンチマークYSZ-TBCシステム に対し88%であった。R₂TiO₅層/YSZ層界面の熱抵抗が遮熱性向上に寄与した可能性がある。
- ・目標達成(熱流束80%以下)を可能とするHE化R₂TiO₅トップコートの放射率と層厚条件を予 測するとともに、本研究で発見した上述の超高放射率の等モル6R-六方晶系HE化R₂TiO₅をト ップコートに適用することで目標達成することを予測した。
- ・創生TBCシステムの200回の耐熱サイクル性はベンチマークYSZ-TBCシステムに比べて著し く優れる。

(4) プロジェクトの総合的推進

- ・二機関会議を定期的に開催し、各要素課題に関する研究の進捗を管理するとともに、プロジェクトの効率的推進を図った(計15回開催)。
- ・特許出願1件、学会発表3件発表した。現在、論文投稿・関連特許出願準備中である。

6.2 今後の予定

高度な信頼性が要求される航空機エンジン用部材に展開するためには、さらなる遮熱性能の向 上や、より実機に近い環境での長期間の耐久性評価等が不可欠である。公的資金を活用した研究 の継続が必要であると考えている。

7. 研究発表、知的財産権等の状況

(1)研究発表等の状況

種別	件数
学術論文	該当なし
学会発表	6件
展示・講演	該当なし
雑誌・図書	該当なし
プレス	該当なし
その他(2023年度、2024年度	3件
JFCC研究成果発表会)	

(2) 知的財産権等の状況

発明の名称	発明者	出願登	出願番号	(出願	出願	出願国	登録番号
		録区分	日)		区分		(登録日)
耐熱材料、遮熱	田中誠,小川貴	出願	特願	2023-	国内		
コーティングシ	史,川島直樹,		117093				
ステムおよび耐	伊藤大志,加藤		(2023/07	//18)			
熱材料の製造方	丈晴,北岡諭						
法							

(3) その他特記事項

該当なし。