JASI レポート

R7-3号: 2025年7月30日

スパイダーウェブ作戦の衝撃

―現代戦におけるイノベーションと国際法秩序

2 等空佐 山田 尊也

はじめに

2025年5月31日、ウクライナの国防副大臣は、ロシアとの間で進行中の紛争について、「戦場で与えた損害の8割はドローンによるものだ。これは技術戦争であり…より多くの量と、最も迅速な拡張性を持つ者が勝利する。」と述べた「。そして、この言葉が持つ深甚な

意味を、世界は翌6月1日に知ることになる。その日、ウクライナによる大規模なドローン攻撃、通称「スパイダーウェブ作戦(Operation Spiderweb)」が実行され、ロシア各地の航空宇宙軍基地に駐機中の爆撃機など大型航空機41機が破壊されたという衝撃的な報が世界を駆け巡った²。

その後、公開された動画³ (Fig.1) や 衛星画像の解析などにより、破壊又は 損傷が確認された機数は当初の発表よ りは少ない12機前後と下方修正され報

Fig.1 爆発炎上するロシア軍の戦略爆撃機 Tu-95

道された4が、ロシア軍にとって予期せぬ相当な損害であったことは否定できない。

¹ ロンドンに拠点を置くシンクタンク、国際戦略研究所 (IISS: The International Institute for Strategic Studies) が主催する、アジア最大の安全保障会議として広く知られる年次会合、「シャングリラ・ダイアローグ」の特別セッション「将来の課題に対する防衛イノベーションソリューション」における発言。"The War Room newsletter: How Ukraine humbled Putin (again)," *The Economist*, June 2, 2025, https://www.economist.com/international/2025/06/02/the-war-room-newsletter-how-ukraine-humbled-putin-again.

² "'Spiderweb' Strikes Cripple 34% of Russian Bomber Fleet in \$7 Billion Blow, SBU Confirms," *The Kyiv Post*, June 1, 2025, https://www.kyivpost.com/post/53749.

³ ウクライナ保安庁が公表した動画(特殊作戦「スパイダーウェブ」: SBU がロシアの戦略航空部隊を焼き払った方法/СПЕЦОПЕРАЦІЯ «ПАВУТИНА»: ЯК СБУ ПАЛИЛА СТРАТЕГІЧНУ АВІАЦІЮ РФ)のスクリーンショット。https://www.youtube.com/watch?v=y-ksNjIAkJo.

⁴ "How satellite images show scale of Ukraine's drone attack on Russian bombers," BBC News, June 5, 2025,

航空作戦において、駐機中の多数の軍用機が奇襲によって破壊された事例は過去にも存在する。1941年のバルバロッサ作戦の劈頭で行われたドイツ空軍(ルフトヴァッフェ/Luftwaffe)によるソ連空軍基地への爆撃5、同年の日本帝国海軍による真珠湾攻撃における米海兵隊や米陸軍飛行隊の飛行場爆撃6、そして1967年の第三次中東戦争(6日間戦争)緒戦でのイスラエル空軍によるエジプト空軍基地攻撃7等がその代表例である。複数の分析が、その大胆さと被害規模から、スパイダーウェブ作戦を真珠湾攻撃になぞらえている8。更に、真珠湾攻撃が戦艦時代の終焉と航空母艦時代の到来を告げたように、本作戦は安価なドローン群による攻撃の有効性と高価な有人航空機が陳腐化しつつある現状を示唆するものだとも指摘されている9。

この作戦がもたらした衝撃は、即座に外国の軍首脳にも波及した。米空軍参謀総長デイビッド・W・オールヴィン大将(Gen. David W. Allvin)もその一人である。大将は、作戦翌日の6月2日に開催されたイベント(The AI+ Expo)で、「ウクライナで今見られる熱意とイノベーションは、戦前には想像さえできなかったものだ」と述べ 10 、翌々日の6月3日に開催されたイベント(2025 CNAS National Security Conference)では、本作戦は、世界中の軍隊にとって、防御と攻撃の両面で「目覚めの瞬間(wake-up moment)」であると警鐘を鳴らしている 11 。

https://www.bbc.com/news/articles/cvg9zdxwk29o.

⁵ 1941 年 6 月 22 日に開始されたドイツによるソ連侵攻作戦(バルバロッサ作戦)の劈頭、ドイツ空軍によるソ連空軍基地への爆撃により、ソ連空軍はこの日の朝だけで 1,200 機以上の軍用機を失うという 壊滅的な打撃を受けた。David M. Glantz and Jonathan M. House, *When Titans Clashed: How the Red Army Stopped Hitler*, University Press of Kansas, 2015, p. 57.

^{6 1941} 年 12 月 7 日の夜明け、日本帝国海軍の空母機動部隊は、ハワイ北方から艦載機を発進させハワイの真珠湾を奇襲した。真珠湾攻撃では、停泊中の戦艦アリゾナ(BB-39)をはじめとする米太平洋艦隊の艦艇の撃沈が有名ではあるが、軍用飛行場(ヒッカム陸軍飛行場、ホイーラー陸軍飛行場、カネオ〜海軍航空基地など)も攻撃しており、軍用機の損失は、撃破 188 機、損傷 159 機にのぼり、その大半は離陸前に破壊された。"The Pearl Harbor Attack, 7 December 1941 – Overview," Naval History and Heritage Command, https://www.history.navy.mil/research/library/online-reading-room/title-list-alphabetically/p/the-pearl -harbor-attack-7-december-1941.html.

^{7 1967}年6月5日、イスラエル空軍はエジプト空軍基地を急襲し、第三次中東戦争が始まった。イスラエル軍は、地上で敵航空戦力を破壊することを企図し、10 か所のエジプト空軍の滑走路を破壊して離陸を不可能にしたうえで駐機中の敵航空機を機銃掃射した。この日のエジプト空軍機の損害は、戦闘機約130機、爆撃機57機、輸送機27機、ヘリコプター13機にのぼった。小椿整治、「第3次中東戦争初日のイスラエル空軍によるエジプト奇襲攻撃の最新像」『戦史研究年報 第18号』2015年3月、防衛研究所、61、71頁。

⁸ Map Shows Russian Air Bases Hit in 'Pearl Harbor' Drone Raid, *Newsweek*, June 02, 2025, https://www.newsweek.com/russia-drones-airfields-ukraine-sbu-istanbul-peace-talks-2079608.

⁹ Max Boot, "Ukraine just rewrote the rules of war," *The Washington Post*, June 1, 2025, https://www.washington post.com/opinions/2025/06/01/ukraine-drone-attack-russia-bombers/. その一方で、真珠湾攻撃は、戦争の開始となった一方的な攻撃だったが、今回のドローン攻撃は、ロシアによる本格的な侵攻から 3 年以上経ってから発生したものであり、いわれのない侵略戦争に対してウクライナが自国を守るための新たな試みに過ぎないという点で、この類推は不適切であるともしている。*Ibid*.

¹⁰ "Pentagon chiefs eye Ukraine's surprise drone strike with anxiety – and envy," *Breaking Defense*, June 04, 2025, https://breakingdefense.com/2025/06/pentagon-chiefs-eye-ukraines-surprise-drone-strike-with-anxiety-and-envy/. ¹¹ "Allvin calls Ukraine drone strikes a wake-up call for US air defense," *Military Times*, June 4, 2025, https://www.

本稿は、ウクライナが実行したこのスパイダーウェブ作戦の全容を概観し、そのイノベーションの一部を分析するとともに、民用物と見分けがつかないように隠蔽、偽装したコンテナハウス(モジュール式木造住宅)からドローンを発射するという前例のない攻撃手法について、国際法的な観点から評価を試みるものである。

1 スパイダーウェブ作戦の概要

(1) 作戦全般

2025 年 6 月 1 日、ロシア連邦各地に密かに持ち込まれた多数の FPV (First Person View, 一人称視点)ドローンが、トレーラーに積載されたコンテナハウスから次々と発射された。 攻撃目標は、ウクライナ攻撃に使用される大型ミサイルの搭載母機であるロシア航空宇宙 軍の戦略爆撃機 Tu-95 ベア及び中距離爆撃機 Tu-22M バックファイア等の大型航空機であった。この攻撃は、「スパイダーウェブ作戦」と称され、ウクライナ保安庁 (SBU¹²) による特殊作戦であった。

(2) 作戦準備

ア 担当機関及び準備期間

スパイダーウェブ作戦は、ウクライナ大統領ウォロディミル・ゼレンスキー(Volodymyr Zelensky)の直接指揮の下、ウクライナ保安庁長官のワシル・マリウク(Vasyl Maliuk)中将及び同庁職員によって実行された 13 。ゼレンスキー大統領が作戦当日の夜に任務の成功を伝える声明の中で、準備には 1 年 6 ヶ月と 9 日を要したことを明らかにした 14 ことから、本計画が 2023 年後半から極秘裏に、かつ周到に進められていたことがうかがえる。

イ 作戦準備段階における特異性―共通の兵器体系と人工知能(AI)による訓練

ウクライナ紛争における特徴の一つは、かつてソビエト連邦という同一国家であったロシアとウクライナが、その歴史的経緯から共通の兵器体系を装備していた点が挙げられる。この共通性が、スパイダーウェブ作戦において重要な役割を果たしたことが報じられている。ウクライナ保安庁は、攻撃翌日の2025年6月2日、公式 Facebook アカウントに1枚の画像(Fig.2)を投稿した¹⁵。画像にはウクライナ保安庁長官マリウク(Vasyl Maliuk)中将

military times. com/news/pentagon-congress/2025/06/03/allvin-calls-ukraine-drone-strikes-a-wake-up-call-for-us-air-defense/.

¹² ウクライナ保安庁について報道等では、ウクライナ語の名称である Служба безпеки України のラテン文字転写である Sluzhba Bezpeky Ukrayiny から、SBU と表記されることが多いが、英訳表記の略称である SSU(Security Service of Ukraine)も使用される。

¹³ "СБУ показала унікальні кадри спецоперації «Павутина», у результаті якої уражено 41 військовий літак стратегічної авіації рф (відео)," Security Service of Ukraine, June 4, 2025, https://ssu.gov.ua/novyny/sbu-pokazala-unikalni-kadry-spetsoperatsii-pavutyna-u-rezultati-yakoi-urazheno-41-viiskovyi-litak-stratehichnoi-aviat sii-rf-video.

¹⁴ "'Absolutely Brilliant Result' – Zelensky Says All Operatives in 'Spiderweb' Drone Op in Russia Safe," *The Kyiv Post*, June 2, 2025, https://www.kyivpost.com/post/53761.

¹⁵ Служба безпеки України(ウクライナ保安庁), facebook, June 2, 2025, 01:48, https://www.facebook.com/SecurSerUkraine/posts/pfbid036N47YSjJgwtkwdq8J6mGHqfDN5h5yN8wav85Q3cuc5qqVuYXpHUiysQN6FZS RnFTl.

とみられる人物が奥に立ち、その視線の先には今回の攻撃目標となった 5 箇所の飛行場の 写真がある。

しかし、ここで注目すべきは、手前の2枚(2機種)の爆撃機(左:Tu-95、右:Tu-22M)の写真である。両機には、赤色で十字のマーキングが施され、これらは各機種の最適な攻撃箇所を示唆している。Tu-95の攻撃位置が主翼の付け根付近、Tu-22Mの攻撃箇所が胴体中央付近とされているのは、極めて合理的である。なぜなら、Tu-95は大部分の燃料を主翼に、Tu-22Mは胴体タンクに搭載しているからである。小型のFPVドローン攻撃で、大型爆撃機が爆発炎上した事実は、この攻撃位置の選定が極めて効果的であったことを証明している。

さらに、これら 2 枚の写真は別の重要な事実を推測させた。それは、両爆撃機の写真は、敵航空基地の偵察写真ではないということである。両機の下には、青々とした草地が広がっている(Tu-22M は細い舗装された通路の上にある。)。通常、軍用機を未舗装の

Fig.2 机上に広げられたロシア軍飛行場と爆撃機の写真(左上 Facebook の写真をトリミング、拡大したもの)

草地に配置することは重量上の制約から不可能であり、このような配置は通常、用途廃止となり展示機として保存されている機体に限られる。

この推測は、その後の報道で裏付けられた。ウクライナは、自国の航空博物館に所蔵してあったロシアの爆撃機¹⁶を活用し、スパイダーウェブ作戦に使用するドローンに、人工知能 (AI) を用いて攻撃最適箇所の学習をさせたのである¹⁷。報道によれば、ウクライナは「博物館の戦略爆撃機をあらゆる角度から数百枚撮影」し、そのデータを基に「爆撃機の最も脆弱な部分を特定し、FPV ドローンが標的を自律的に認識・攻撃できるようにする AI アル

¹⁶ ソビエト連邦であった頃のウクライナには、多数の ICBM や戦略爆撃機が配備されていた。Steven Pifer, *The Trilateral Process: The United States, Ukraine, Russia and Nuclear Weapons*, Brookings Institution, May 2011, p.4. しかし、独立の際に、アメリカやロシアとの国際的な合意(START I やリスボン議定書等)に基づき、核兵器と共にこれらの戦略爆撃機の放棄が決定され、多くの機体はアメリカの資金援助のもとで解体、廃棄された。*Ibid.*, p.28. しかし、ごく一部の機体は、歴史的遺産としてウクライナのいくつかの航空博物館に残された。ポルタヴァ重爆撃機航空博物館(Poltava, Museum of Heavy Bomber Aviation)には、Tu-160、Tu-95MS、Tu-22M3 がある。https://www.visitpoltava.com/en/historydata/view?id=27. また、ウクライナ国立航空博物館(Ukraine State Aviation Museum)には、Tu-22M3、Tu-142M3(Tu-95 の対潜哨 戒機型)等がある。https://aviamuseum.com.ua/en/exposition/exposition/kb-tupoleva/.

¹⁷ "Ukraine Trained AI for Its 'Spiderweb' Airfield Drone Attacks at Aviation Museum," *The Kyiv Post*, June 2, 2025, https://www.kyivpost.com/post/53784.

ゴリズム」を開発したとされる¹⁸。

ウ ロシア領内への搬入と発射手段の特異性

スパイダーウェブ作戦の成否の核心は、小型の FPV ドローンをいかにしてロシア領内の 航空基地近傍まで運搬するかにあったともいえる。報道やウクライナ保安庁の公式発表を 総合すると、作戦遂行のプロセスは以下のとおりであった。

まず、作戦に使用されたドローンはウクライナ保安庁の工作員によってロシア連邦内に 密輸され、ロシア国内への搬入後、可搬型の木造コンテナハウスの屋根の下に隠蔽された とされる¹⁹。その後、これらのコンテナハウスはトレーラーに積載され、通常の貨物輸送と して各基地近傍まで運ばれたと報じられている²⁰。

これらの状況は、6月11日のウクライナ保安庁の公式テレグラム(Telegram)においても公表されている。同庁は、「まずFPVドローンをロシアに輸送し、その後、モジュール式木造住宅を輸送した。ロシア連邦領内では、ドローンはトラックに積み込まれ、住宅の屋

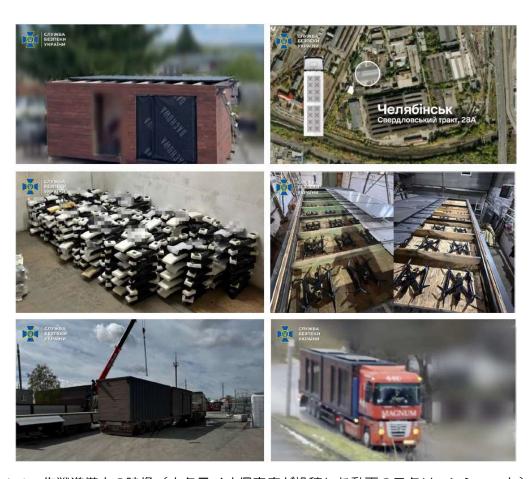


Fig.3 作戦準備中の映像(ウクライナ保安庁が投稿した動画のスクリーンショット)

_

¹⁸ *Ibid*.

 $^{^{19}}$ 「ドローンを密輸してロシア空軍基地を攻撃、ウクライナの大胆な作戦はどのように行われたのか」、CNN、2025 年 6 月 3 日、https://www.cnn.co.jp/world/35233756.html。 20 同上。

根裏に隠されていた。」と述べている²¹。このテレグラムに投稿された動画では、今回のスパイダーウェブ作戦について、敵後方奥深くへの最大規模の攻撃がどのように準備され、 実行されたかを時系列で示している²² (Fig.3)。

報道によれば、ロシアの航空基地の近傍に攻撃用ドローンを運んだトレーラーの運転手らは、積荷にドローンが積まれていることを知らされておらず、電話で指示を受け、いつどこで停車するかを指示された²³。ムルマンスク地方に向かったトレーラーは、基地近くのガソリンスタンドの側に停車した際にドローンが発射され、イルクーツク州に向かったトレーラーは、カフェ近くに停車後、突然、車両後部からドローンが飛び始め、リャザン州に向かったトレーラーは、リャザンに入った途端、貨物コンテナの屋根が突然、走行中に剥がれ落ち、ルート上でドローンが飛び始めたとされている²⁴。イヴァノヴォ州でもこれらと類似の状況であったといわれている。

今回の攻撃は、兵器としての外形を完全に隠蔽した状態で輸送された。ロシアのトレーラー運転手を雇用し、ドローン発射装置を通常の貨物であるかのように偽装したことは、本件作戦の主要な特徴の一つであると評価できよう²⁵。

(3) 作戦実施

ア 攻撃目標となった基地

スパイダーウェブ作戦で攻撃 目標とされたのは、ロシアの5つ の主要な航空宇宙軍基地であっ た。具体的には、イルクーツク州 ベラヤ、リャザン州ディアギレヴ オ、イヴァノヴォ州イヴァノヴ オ・セヴェルヌイ、ムルマンスク 州オレニヤ、アムール州ウクライ

Fig.4 攻撃目標となったロシア各地の軍用飛行場(ウクライナ保安庁が投稿した動画のスクリーンショット)

²¹ "СБУ буде бити ворога там, де він вважає себе недосяжним, – Голова СБУ Василь Малюк про спецоперацію «Павутина»," Служба безпеки України, June 11 at 15:30, 2025, https://t.me/SBUkr/15006.

²² Ibid., [上左] モジュール式木造住宅 (コンテナハウス)、[上右] ロシア国内の準備拠点、[中左] 集積されたドローン、「中右」準備拠点の倉庫の中で屋根の下に隠されたドローン、[下左] トレーラーへの積載、[下右] トレーラでの輸送。

²³ "Russian Truck Drivers Reveal How They Unwittingly Became Pawns in Operation Spiderweb," *UNITED24 Media*, June 02, 2025, https://united24media.com/latest-news/russian-truck-drivers-reveal-how-they-unwittingly-became-pawns-in-operation-spiderweb-8812.
²⁴ *Ibid*

²⁵ 戦時においても民間の鉄道やトラックの有蓋車やコンテナで、軍用の弾薬等を外観では分からない形で運搬することはよくあることであろう。これについては、特段「欺瞞」と呼ぶことはなく、非難されることもないように思われる。一方、ウクライナによるスパイダーウェブ作戦において、FPV ドローンを民間のコンテナハウスの二重屋根の下に隠したのは、この弾薬輸送と一見似ているものの、明らかに意図的、積極的な隠蔽であるという差があり、欺瞞であるといえよう。

ンカがその対象であった 26 (Fig.4)。これらの基地は、Tu-95、Tu-160、Tu-22M といった大型爆撃機を運用する遠距離航空部隊や A-50 早期警戒管制機等を運用する重要な戦略拠点である。したがって攻撃目標は、ウクライナの都市部をミサイル攻撃する爆撃機の活動を直接的に阻害し、ロシアの戦略航空戦力を体系的に弱体化させることを企図した意図的な選定であったと推測されている 27 。

攻撃に成功した目標のうち、ウクライナから最も離れている場所は、東シベリアのイルクーツク州ベラヤ基地で、その距離は約 4,500 キロメートル以上にも及ぶ。ウクライナのゼレンスキー大統領が、本作戦を「我々にとって最も長距離の作戦だった(Our most long-range operation)」と称賛したように 28 、その広大な作戦範囲は本作戦の顕著な特徴の一つである。

イ 作戦実施状況

作戦の具体的な実施状況は、ウクライナ保安庁が 6 月 7 日に公開した別の動画によって詳細に把握することができる。Facebook に投稿された当該動画には、ウクライナの FPV ドローンが、コンテナハウスの屋根から離陸する瞬間から、ベラヤ基地の Tu-22M3 爆撃機に突入するまでの全行程が無編集で記録されている²⁹。動画には、FPV ドローンが秒速 20 メートル³⁰(時速 72 キロメートル)という高速度を維持し、既に複数の箇所から黒煙が立ち

上る飛行場敷地内に、何らの妨害を受けることなく進入する様子が映し出されている(Fig.5)。

この映像は8倍速で再生されており、表示される飛行時間(約50秒)から実際の飛行時間は約400秒(6分40秒)と算出される。この計算から、FPVドローンはベラヤ基地から約8キロメートルの地点で発射され、7分弱で基地上空に到達した後、目標のTu-22M3に突入したと推定される。

Fig.5 攻撃を受け煙が立ち上るベラヤ基地に一直線に向かう FPV ドローン(ウクライナ保安庁が投稿した動画のスクリーンショット)

²⁹ Служба безпеки України(ウクライナ保安庁), facebook, June 7, 2025, 22:24, https://www.facebook.com/ SecurSerUkraine/videos/1294625328909124/.

²⁶ Spura note 21. このうち、最東端のアムール州 ウクラインカ基地への攻撃は未遂に終わった。

²⁷ "Operation Spider Web: Strategic Analysis," European Security, June 3, 2025, https://european-security.com/operation-spider-web/.

²⁸ Spura note 14.

³⁰ Fig.5 の画面左端に(少し切れているが)AS (Airspeed:対気速度)、GS (Ground Speed:対地速度)の表示が見て取れる。

この映像の公開の数日前、ウクライナ保安庁は公式ウェブサイトにて、作戦の全容を伝える別の動画を公開している³¹。これは、攻撃に成功した4つの飛行場(オレニヤ基地、イヴァノヴォ基地、ディアギレヴォ基地、ベラヤ基地)に対して攻撃を行う多数のFPVドローン視点の映像をつなぎ合わせたものである。

この動画を分析した結果 (Fig.6)、40 の場面から構成されており、40 機 (乃至は 41 機)を攻撃という情報は、これを基に語られている可能性がある。しかし、映像を精査すると、

遠距離から望む場面が7つ、場面が切り変わっても同一機体を目標とする場面が2つあり、実質的な攻撃(接近)は31場面であった。機種別の内訳は、Tu-95(12機、39パーセント)、Tu-22M(16機、52パーセント)、A-50(2機、6パーセント)、An-12(1機、3パーセント)となる³²。

さらに分析を進めると、より重大な事実が浮かび上がる。全40場面(機)中、25場面(機)において、画面中央に赤文字で"FAIL SAFE"と表示されている点ででいる点でいるが、当該ドローターによるが、オペトら、何らかの理由で撃)に移行しており、その割合がもいるのは注目に値する。

場面	時間	基地	機種	状態	画面表示	備考
1	0:01	オレニア	Tu-95	衝突 (急速接近)	FAIL SAFE	
2	0:07	オレニア	Tu-95	緩やかに接近	_	1と同一機体
3	0:12	オレニア	Tu-95	近接飛行(通過?)	FAIL SAFE	機体下、パイロン部
4	0:16	オレニア	Tu-95	緩やかに接近	FAIL SAFE	
5	0:20	オレニア	Tu-95	機体上に着地	FAIL SAFE	
6	0:25	オレニア	Tu-95	緩やかに接近	FAIL SAFE	
7	0:31	オレニア	Tu-95	遠望	FAIL SAFE	
8	0:36	オレニア	Tu-95	緩やかに接近	_	
9	0:41	オレニア	Tu-95	衝突 (急速接近)	FAIL SAFE	
10	0:45	オレニア	Tu-95	緩やかに接近	_	
11	0:53	オレニア	Tu-95	衝突(急速接近)	FAIL SAFE	
12	0:57	オレニア	Tu-22M	近接飛行 (通過?)	FAIL SAFE	
13	1:04	オレニア	Tu-22M	緩やかに接近	FAIL SAFE	
14	1:10	オレニア	Tu-22M	緩やかに接近	FAIL SAFE	
15	1:21	オレニア	An-12	衝突(急速接近)	FAIL SAFE	輸送機
16	1:27	オレニア	Tu-95	遠望	FAIL SAFE	
17	1:31	イヴァノヴォ	A-50	機体上に着地	FAIL SAFE	途中からFALE SAFEの表示
18	1:55	イヴァノヴォ	A-50	衝突 (急速接近)	FAIL SAFE	
19	2:00	ディアギレヴォ	Tu-22M	衝突(急速接近)	FAIL SAFE	
20	2:09	ディアギレヴォ	Tu-22M	近接飛行 (通過?)	_	19と同一機体
21	2:15	ディアギレヴォ	Tu-22M	衝突(急速接近)	_	
22	2:20	ディアギレヴォ	Tu-22M	衝突(急速接近)	_	
23	2:30	ベラヤ	Tu-22M	近接飛行(通過?)	FAIL SAFE	
24	2:40	ベラヤ	Tu-22M	衝突(急速接近)	_	直上から降下
25	2:49	ベラヤ	Tu-22M	衝突(急速接近)	_	
26	2:52	ベラヤ	Tu-22M	緩やかに接近	FAIL SAFE	
27	3:03	ベラヤ	Tu-22M	緩やかに接近	_	
28	3:08	ベラヤ	Tu-22M	衝突(急速接近)	FAIL SAFE	Internal Error 0x4000の表示
29	3:13	ベラヤ	Tu-22M	緩やかに接近	_	
30	3:21	ベラヤ	Tu-22M	緩やかに接近		
31	3:28	ベラヤ	Tu-22M	近接飛行(通過?)	FAIL SAFE	
32	3:33	ベラヤ	Tu-22M	緩やかに接近	_	直上からの映像のみ
33	3:38	ベラヤ	Tu-22M	遠望	_	
34	3:40	ベラヤ	Tu-95	遠望	FAIL SAFE	黒煙が上がる中、飛行
35	3:48	ベラヤ	Tu-95	緩やかに接近	FAIL SAFE	
36	3:55	ベラヤ	Tu-95	機体上に着地	FAIL SAFE	安全に(爆発せず)着地?
37	4:05	ベラヤ	Tu-95	緩やかに接近		
38	4:15	ベラヤ	IL-78?	遠望	FAIL SAFE	IL-78の隣で炎に包まれる機体
39	4:25	ベラヤ	Tu-95	遠望	FAIL SAFE	消火活動実施。人の姿も。
40	4:32	ベラヤ	Tu-22M	遠望		燃え上がるTu-22M。遠望のみ

Fig.6 ウクライナ保安庁が公表した動画(特殊作戦「スパイダーウェブ」: SBU がロシアの戦略航空部隊を焼き払った方法)の分析

また、本動画にみられる攻

撃目標への突入箇所が、Tu-95 においては主翼基部、Tu-22M においては胴体中央部に的確

_

³¹ *Spura* note 13.

³² ウクライナ保安庁の発表によれば、これらに加え Tu-160 可変翼超音速戦略爆撃機と IL-78 空中給油機を攻撃したとされるが、その場面は少なくともこの映像中では確認できない(場面 38 の IL-78 の隣で炎上している機体が、IL-78 である可能性は排除できないと思われる。)。 *Ibid.*

³³ Fig.1 の画面中央の赤文字の "FAIL SAFE"がそれである。

に集中していた点も注目される。これらの部位は、各機種の燃料搭載部と一致しており、 事前に脆弱箇所を学習させた AI による攻撃判断の精度を裏付けるものともなっている。

この動画を伝えるウクライナ保安庁の公式ウェブサイトには、「作戦中は、自律型人工知能アルゴリズムとオペレーターの手動介入を組み合わせた最新の UAV 制御技術が使用され… (中略) …指定された標的に接近して接触すると、弾頭が自動的に起爆した。」との説明が付されている³⁴。

これらのドローンが、電波妨害などによって意図せず "FAIL SAFE"モードに移行したのか、それとも戦術的に意図して "FAIL SAFE"モードが選択されたのか、また、いつの時点から "FAIL SAFE"モードになっているのかなど詳細は不明である。しかし、この AI のシステムが、ミサイルの終末誘導で画像照合を行うものに近いのか、それとも LAWS (Lethal Autonomous Weapons Systems/自律型致死兵器システム) に近いものなのかは、極めて興味深い考察対象となる。いずれにせよ、一定程度自律的に攻撃を行うドローンがこれほど大量かつ同時に作戦で使用されたのは、初めてのケースかもしれない³⁵。準備段階における標的学習から、最終攻撃段階での自立誘導に至るまで AI を本格的に使用した点こそが、本作戦の技術的な革新性を示す最大の特徴と評価できよう。

(4)スパイダーウェブ作戦の戦果

ア 商用衛星画像による解析と影響評価

スパイダーウェブ作戦を巡る特徴的な出来事の一つとして、作戦終了後、直ちに研究機

関や報道機関が、商用衛星画像を駆使して攻撃効果の分析を迅速に実施したことが挙げられる。これは、オープンソース情報 (OSINT) を活用した現代的な民間の情報分析の手法を示すものである。ウクライナ保安庁が公表した動画に含まれる攻撃後のロシア軍基地の衛星写真 (Fig.7) からも、3 機の大型機が破壊された状況が明確に確認できる³⁶。写真左及び中央の機体が Tu-95 であることは判別可

Fig.7 攻撃後のロシア軍基地を撮影した衛星画像(ウクライナ保安庁が公表した動画のスクリーンショット)

³⁴ Spura note 13.

³⁵ ジュネーヴ諸条約第一追加議定書第36条では、新たな兵器について、「締約国は、新たな兵器又は戦闘の手段若しくは方法の研究、開発、取得又は採用に当たり、その使用がこの議定書又は当該締約国に適用される他の国際法の諸規則により一定の場合又はすべての場合に禁止されているか否かを決定する義務を負う。」と規定するが、ウクライナがどのように合法性審査を行っているかは定かではない。尤も、作戦を指揮したウクライナ保安庁長官のマリウク中将は、この作戦を「歴史的で、合法的な攻撃」と呼んでいる。Noel Reports, June 2, 2025, https://bsky.app/profile/noelreports.com/post/31qmh73bals2h/.

³⁶ 他のソースによれば、この写真は、オレニヤ基地を 6 月 4 日撮影した MAXAR 社の光学衛星のもの

能であるが、右側の機体は片付けが進行しているため機種の特定が困難となっている。このような商用衛星画像を利用して、多くの研究機関や報道機関が戦果の分析を実施している³⁷。

こうした分析の中で、国際戦略研究所 (IISS) のミリタリー・バランス・ブログ (Military Balance+) が、被害機数及び損傷程度の分析を分かりやすく提示している (Fig.8) 38 。IISS は、本作戦における戦果を、破壊 12 機 (Tu-95×7 機、Tu-22M×4 機、An-12×1 機)、損傷 2 機 (Tu-22M×2 機)、未確認 7 機 (Tu-22M×4 機、A-50 (用途廃止機) ×2 機、IL-78×1 機) と推計している。

この推計は、ウクライナ保安庁の公式発表(41機破壊)とは大きな乖離があるものの、IISSによるこの推計が正確であるならば、ロシアはTu-95及びTu-22Mのそれぞれ約1割を一度の攻撃で喪失した計算になる。この被害の影響を大きいとみるか少ないとみるかは、専門家の間でも見解の分かれるところとなっている。

被害の影響を大きいと見做す意見としては、第一に、損失の「数」と「質」、そしてその「代替不可能性」を指摘するものである。航空機の常として、運用可能な機体は総機体数の一部に過ぎず、残りの機体は定期整備や大規模改修等により非可動状態にあることを考慮すれば1割の喪失は非常に大きな痛手であると指摘している³⁹。また、遠距離航空部隊の爆撃機は、ロシアにとって最も貴重な戦略航空資産の一つである

Fig.8 国際戦略研究所による攻撃結果判定

のようである "Confirmed Losses of Russian Aircraft Mount after Ukrainian Drone Assault," *The War Zone*, June 4, 2025, https://www.twz.com/air/firm-evidence-of-russian-aircraft-losses-after-ukrainian-drone-strikes.

³⁷ 例えば、ウクライナ保安局の動画とともに、国際戦略研究所は Planet Labs 社及び Maxar 社の光学画像を用い、NBC は MAXAR 社の光学画像を用い、ロイター通信は Capella Space 社の SAR 画像を用いてそれぞれ分析している。

³⁸ "Operation Spiderweb: an Assessment of Russian Aerospace Forces Losses," *Military Balance* Blog, June 6, 2025, https://www.iiss.org/online-analysis/military-balance/2025/06/operation-spiderweb-an-assessment-of-russian-aerospace-forces-losses/.

³⁹ "What Ukraine's Unprecedented Drone Attack Means for Russia's Bomber Force," *The War Zone*, June 2, 2025, https://www.twz.com/air/what-ukraines-unprecedented-drone-attack-means-for-russian-bomber-force.

が、既に生産能力が失われているため、その多くが代替不可能であるとしている⁴⁰。

第二に、本作戦はウクライナによる「コスト強要戦略」の成功事例と評価する見解もある。ウクライナが、低価格な FPV ドローンにより、ロシアの戦略爆撃機などの高価値目標を破壊したことは、戦争の費用対効果の抜本的な転換を示唆すると分析している⁴¹。こうした攻撃は、ロシアに対して、直接的な機体の被害コストに加え、強化型掩体 (HAS: Hardened Aircraft Shelter) の建設や被害復旧態勢の強化、対ドローンシステムの開発、生産、配備、さらには爆撃機部隊のより後方(深奥部)への機動分散といった莫大な間接的コストにも相当負担を強いることとなる⁴²。更に、ロシアの奥地からウクライナへの遠距離出撃は、老朽化している Tu-95 等にとって大変厳しい作戦となり、整備等の更なるコスト増加の要因となることは想像に難くない。

反対に被害の影響は少ない(限定的)と見做す意見も存在する。これは、かつての真珠 湾攻撃が米軍に決定的な打撃を与えるに至らなかったように、スパイダーウェブ作戦がロ シア軍に決定的な打撃を与えるものではないとする見解⁴³や、ロシアによる爆撃機を使用 するウクライナへのミサイル攻撃を阻止するには不十分だとする見解⁴⁴など、主として今 回の攻撃が戦争の帰趨を変えるほどではないと評価するものである。

現時点において詳細な被害状況等が不明であるため、本作戦の影響の大きさを確定的に評価することは困難である。しかしながら、ロシアはスパイダーウェブ作戦で Tu-95 の損失を受け、これまでウクライナに対する作戦では温存してきた希少な Tu-160 爆撃機をウクライナの攻撃に使用することを余儀なくされており、Tu-95 が不足していることの深刻化を示すものとして報じられている⁴⁵。また、スパイダーウェブ作戦の攻撃を受けた後、ロシアは、Tu-160、Tu-95、Tu-22 を含む爆撃機群を極東の空軍基地に移転し始めたことも衛星写真から確認されており⁴⁶、これらの事実は、少なくとも攻撃がロシアの遠距離航空部隊の運用に一定程度の影響を具体的に及ぼしていることを示している。

101a.

⁴⁰ Ihid

⁴¹ "Is Ukraine's Drone Attack a Turning Point in the War?" The Soufan Center, June 11, 2025, https://thesoufan center.org/intelbrief-2025-june-11/.

^{***} こうした点を指摘するものとして、"Ukraine's Stunning Assault Roils Russia's Global Military Strategy," The Wall Street Journal, June 2, 2025, https://www.wsj.com/world/ukraines-stunning-assault-upends-russias-global-military-strategy-094f8c1c や "Spider's Web' warning: The US must prioritize drone defense to avoid Russia's fate," Breaking Defense, June 9, 2025, https://breakingdefense.com/2025/06/spiders-web-warning-the-us-must-prioritize-drone-defense-to-avoid-russias-fate/ などがある。

⁴³ Spura note 9.

⁴⁴ "Satellite imagery shows Ukraine attack destroyed and damaged Russian bombers," *Reuters*, June 4, 2025, https://www.reuters.com/business/aerospace-defense/satellite-imagery-shows-ukraine-attack-destroyed-damaged-russian-bombers-2025-06-03/.

⁴⁵ "Russia Forced to Deploy Rare Tu-160 Bombers Amid Tu-95 Losses in Operation Spider Web," *UNITED24 Media*, June 06, 2025, https://united24media.com/latest-news/russia-forced-to-deploy-rare-tu-160-bombers-amid-tu-95-losses-in-operation-spider-web-8933.

⁴⁶ "Russia Relocates Strategic Bombers to Far East After Ukrainian Operation Spider Web, Satellite Images Show," *UNITED24 Media*, June 12, 2025, https://united24media.com/latest-news/russia-relocates-strategic-bombers-to-far-east-after-ukrainian-operation-spider-web-satellite-images-show-9068.

イ 核の三本柱 (トライアド) に与える影響

スパイダーウェブ作戦において攻撃対象となったロシアの Tu-95 や Tu-22M 等の大型爆撃機は、ウクライナへの空中発射ミサイル攻撃に使用される主要なプラットフォームである⁴⁷。したがって、これらの大型爆撃機への攻撃は、ウクライナに対する空中発射ミサイルの攻撃能力をある程度減退させる一方で、これらの大型爆撃機が核兵器の運用能力を有することから、核の戦略的安定性に予期せぬ影響を与えかねないとの懸念も指摘された⁴⁸。

しかし、この懸念に対しては、ロシアの核戦力における戦略爆撃機の位置付けから、影響は限定的であるとの見方が支配的である。専門家からは、「いわゆる『核の3本柱』、すなわち大陸間弾道ミサイル(ICBM)、潜水艦発射弾道ミサイル(SLBM)、戦略爆撃機の中で、ツポレフ 95 は既に最も小さな構成要素であった。」と指摘されている⁴⁹。ロシアの核戦力は ICBM や SLBM が主要な役割を担っているため、「ロシア大統領府や国防省に近い関係者らも、今回の攻撃でロシアの核戦力が大きく削がれることはないとの見方を示した」と報じられている⁵⁰。したがって、本作戦は、ロシアの核抑止力の根幹を揺るがすほどのものではないと評価されよう。

2 スパイダーウェブ作戦の法的評価

前項まででみてきたように、スパイダーウェブ作戦は、その革新的な実行方法、特に偽装された民間のコンテナハウスから発進した多数のFPVドローンによる攻撃という手法において、従来の軍事作戦には見られない特異な要素を含んでいる。ロシア国防省がこの攻撃を「テロ攻撃」と非難するように、その実行方法の合法性は国際法上の論点となり得る51。本項では、このような作戦が、既存の国際法規範に照らしてどのように評価されるかを以下の三点を中心に分析する。第一に、ウクライナ陸海空軍とは異なる組織であるウクライナ保安庁の法的地位、特に戦闘への参加の合法性について確認する。第二に、FPVドローンの発射プラットフォームが、民間車両であるトレーラーに積載されたコンテナハウスに偽装されていた点について分析する。第三に、攻撃に用いられた人工知能(AI)活用 FPVドローンが、自律型致死兵器システム(LAWS: Lethal Autonomous Weapons Systems)に該当するか否かについて検討する。

⁴⁹ 「ロシア政府内に怒りと警戒感、ウクライナが戦略爆撃機攻撃で一関係者」Bloomberg News、2025 年 6 月 3 日、https://www.bloomberg.co.jp/news/articles/2025-06-02/SX8KMJT0G1KW00。

⁴⁷ Spura note 44. 特に Tu-95 爆撃機は、最大 8 発の Kh-101 空中発射巡航ミサイル(ALCM)を搭載し、ウクライナの都市部への大規模攻撃で破壊的な被害をもたらしてきた。Kh-101 はウクライナに対して発射された主な ALCM であり、スパイダーウェブ作戦が行われる直前の週にも発射された。"Zelenskyy's drone card: How Operation Spiderweb impacts Russia's capabilities going forward," *Breaking Defense*, June 03, https://breakingdefense.com/2025/06/zelenskyys-drone-card-how-operation-spiderweb-impacts-russias-capabilities-going-forward/.

⁴⁸ Spura note 9.

⁵¹ "Operation Spiderweb: How Ukraine's Daring Top Secret Drone Assault Unfolded," *Newsweek*, June 2, 2025, https://www.newsweek.com/russia-drone-operation-spiderweb-aircraft-2079823. ただし、ロシア国防省は、具体的にどういった部分を違法な行為(テロ行為)とみているのかは、不明である。

(1) ウクライナ保安庁の法的地位

ア 問題の所在

スパイダーウェブ作戦の実施主体は、ウクライナ軍ではなくウクライナ保安庁であるとされている。ソビエト連邦時代の諜報機関を前身とし、法執行機関としての性格を持つとされるウクライナ保安庁の戦闘参加の適法性は、同庁が軍隊(軍事組織)であるか否かによって判断が分かれる。例えば、海上における法執行機関に関して、日本の海上保安庁(Japan Coast Guard)は警察組織に分類されるのに対し、米国の沿岸警備隊(U. S. Coast Guard)は軍の一部として位置づけられていることは周知の事実である。原則的には、前者に分類されるのであれば、戦闘参加は国際法上違法であり、後者であれば合法となる。この問題は、武力紛争における文民と戦闘員の区別、及び戦闘参加の合法性に関わる国際法上の基本的な論点である。

イ ウクライナ保安庁の任務

ウクライナ保安庁の法的性格を判断するため、まずウクライナの国内法を確認する。ウクライナ保安庁は、ウクライナ保安庁に関する法律第1条で「ウクライナの国家安全保障を確保する法執行機能を備えた特別目的の国家機関」と規定されている⁵²。更に、同法第2条では、ウクライナ保安庁の任務について、「国家主権、憲法秩序、領土保全、科学技術、防衛力、国家の利益及び国民の権利を、外国の特殊機関による諜報活動や破壊活動、個々の組織、グループ、個人による侵害から保護し、国家機密を確実に保護する」と定めており、その任務には「人類の平和と安全に対する犯罪行為、テロ行為、ウクライナの重大な利益に直接脅威を与えるその他の違法行為の防止、特定、鎮圧、摘発」も含まれるとしている⁵³。これらの規定から、ウクライナ保安庁の地位は、その任務の性質上、法執行機関としての性格を持つと同時に、国家防衛に関わる軍事組織としての側面も併せ持つと評価できる。

ウ ウクライナ保安庁の組織及び要員

ウクライナ保安庁に関する法律は、ウクライナ保安庁の組織と要員構成についても明確に規定している。ウクライナ保安庁の組織は、ウクライナ保安庁に関する法律第9条で「ウクライナ保安庁中央局、それに従属する地域機関、軍事防諜機関、軍事組織、並びにウクライナ保安庁の教育、科学、研究及びその他の機関から構成される」と規定されており54、軍事組織が含まれることが法文上明記されている。また、同法第19条では、ウクライナ保安庁の要員について、「軍人、ウクライナ保安庁と雇用契約を締結した職員、及び徴兵された軍人」からなると定めている。更に第20条では、ウクライナ保安庁の軍人は、「法律で定められたウクライナ軍における兵役手続きに従う義務があり」、「ウクライナ国民への忠

⁵² About the Security Service of Ukraine: Law of Ukraine dated March 25, 1992. https://zakon.rada.gov.ua/laws/show/2229-12#Text.

⁵³ *Ibid*.

⁵⁴ Ibid.

誠の軍事宣誓を行い」、「ウクライナの『兵役義務及び兵役に関する法律』に基づいて承認 された標章付きの軍服を着用する権利を有する」とされている⁵⁵。このように、ウクライナ 保安庁は、その組織内に軍事部門とウクライナ軍の制服を着た軍人が含まれることも、法 文上明確にされている。

エ 小括―ウクライナ保安庁の戦闘参加の合法性

以上の確認から明らかなように、ウクライナ保安庁は、ウクライナ国内法において軍事 組織及び軍人を構成要素に含むことが明記されている。また、報道等を通じて、同庁の要 員が軍の制服や階級章を着用して活動している実態も確認されており、ウクライナ保安庁 は、規則上も実態上も軍の一つとして活動していると判断できる。したがって、国際法の 観点からも、ウクライナ保安庁は軍事組織と見做され、戦闘への参加は合法と評価される。

実際にこれまで、ウクライナ保安庁がスパイダーウェブ作戦だけでなく、キーウ防衛や ズミイヌイ(蛇)島奪還作戦等の地上戦56、黒海における海上ドローンによるロシア艦隊に 対する泊地攻撃57や、クリミア大橋破壊58等の数多くの重要な作戦を実施してきているが、 管見の限りウクライナ保安庁の戦闘参加を違法として非難する論調は見られない。以上の ことから、ウクライナ保安庁によるスパイダーウェブ作戦の実行は、不法な戦闘参加やテ ロ行為ではなく、合法な作戦主体による正当な武力の行使であることは明らかである。

(2) 欺瞞に関する武力紛争法上の評価

ア 問題の所在

ウクライナのスパイダーウェブ作戦におけるドローン攻撃おいて、民間トレーラーに積 載されたコンテナハウスをFPVドローンの移動式発射プラットフォームとして使用した欺 瞞行為が、武力紛争法で禁止される背信行為 (perfidy) に該当するのか、それとも許容され る奇計(ruse of war)の範囲内と評価されるのか、という点が問題となる。この問題は、武 力紛争における欺瞞行為の許容と限界に関わる重要な論点である。

イ 背信行為の禁止

背信行為 (perfidy) とは、文字どおり「信に背く」行為であり、より具体的には、敵の信 用を利用してこれを裏切る行為を指す。騎士道の時代から、背信行為はどんなに英雄的な 行為によっても償うことのできない不名誉と見做されてきた59。背信行為により敵を殺傷 することの禁止は、慣習国際法の長年にわたる原則 (long-standing rule of customary international law) であり 60 、1907年の陸戦ノ法規慣例ニ関スル規則(ハーグ陸戦規則)第23

⁵⁶ Serhii Yevtukh, "The Security Service of Ukraine: Key Operations and Challenges During the Full-scale Russian-Ukrainian War," Military Science, Vol. 2 No.4, The Central Research institute of the Armed Forces of Ukraine, 2024, p.p.139-140.

⁵⁷ *Ibid.*, p.p.140-141.

⁵⁸ *Ibid.*, p.142.

⁵⁹ Yves Sandoz et al., Commentary on the Additional Protocols of 8 June 1977 to the Geneva Conventions of 12 August 1949, International Committee of the Red Cross, 1986, p.434.

⁶⁰ Jean-Marie Henckaerts, Louice Doswald-Beck, Customary International Humanitarian Law, Volume I: Rules,

条に成文化され、1977年のジュネーヴ諸条約第1追加議定書(AP1: Additional Protocol I to the Geneva Conventions)第37条でも成文化された⁶¹。ここで留意すべきは、「背信行為の禁止」が、背信行為となる偽装や欺瞞そのものを禁止するのではなく、背信行為によって敵の人員を殺傷等することを禁止するものである、という点である。すなわち、背信行為の禁止は、背信行為となる偽装、欺瞞と、それに続く殺傷等の結果という二つの要素をともに満たすものが禁止とされる行為である。

まず、背信行為となる偽装、欺瞞そのものについて、AP1 第 37 条第 1 項は、「武力紛争の際に適用される国際法の諸規則に基づく保護を受ける権利を有するか又は保護を与える義務があると敵が信ずるように敵の信頼を誘う行為であって敵の信頼を裏切る意図をもって行われるもの」と規定している。この規定は、三つの要素一①武力紛争法によって与えられる保護を偽ること、②敵対者の信頼を誘うこと、③その信頼を裏切る意図があること一から構成される⁶²。そしてこの①について、AP1 第 37 条第 1 項では、「例として」次の 4 つの行為を挙げている。

- ・休戦旗を掲げて交渉の意図を装うこと、又は投降を装うこと。
- ・負傷又は疾病による無能力を装うこと。
- ・文民又は非戦闘員の地位を装うこと。
- ・国際連合又は中立国その他の紛争当事者でない国の標章又は制服を使用して、保護されている地位を装うこと。

これらはあくまで例示であって、背信行為の対象となる武力紛争法によって与えられる 保護を偽る事例の全てを網羅したものではない。したがって、その適用にあたっては、条 文解釈や国家実行等の慎重な検討が必要である。これらの例示に共通する点は、戦闘員(軍 人)が、保護される対象(文民等)を偽ることや、保護される状態(投降や負傷による無 能力等)を装うという点、つまり保護されない「人」を保護される「人」に偽装するもの が例示的に規定されているというところである。

逆に言えば、保護されない「人や物」を保護される「物」に偽装することについては、背信行為の対象とはならないこととなる。例えば、文民や民用物は基本的には保護対象であるが、戦闘員が文民の姿を装うことは禁止されるが、民用物を装うことは禁止されない。戦闘員が民用物を装う典型的な例は、迷彩服や草木を利用したカムフラージュ(偽装)であり、これは AP1 第 37 条第 2 項において明文で合法とされている⁶³。自然の草木だけでなく、いわゆる都市迷彩と言われるようなグレー系の迷彩でも同様であろう。

また、武力紛争法は、戦闘員が民間の家屋や民間の車両の陰や内部に隠れることも通常

International Committee of the Red Cross, Cambridge University Press, 2005, p.221.

⁶¹ *Ibid.*, p.223. AP1 第 37 条では、背信行為によって敵を殺傷することに加え、「捕らえること」(捕獲) も禁止に加えられた。

⁶² Spura note 59.

⁶³ 本号ウ参照。

の戦闘方法として伝統的に許容してきた。更に、軍用の物について言えば、戦車を納屋に 隠しても、納屋自体が軍事目標化し、民用物としての攻撃をされないという保護を失うだ けで、その行為自体は背信行為とは見做されてこなかった。ただしその一方で、同じ民用 物であっても、病院、文化財、医療用車両など、武力紛争法で特別の保護を与えられてい る物に偽装することは背信行為にあたると解されている。

次に、背信行為に関して武力紛争法が禁止する行為について考える。武力紛争法が禁止するのは、背信行為となる偽装、欺瞞そのものではなく、背信行為を利用して、敵の人員を殺傷することである(ただし、ハーグ陸戦規則第23条が背信行為により「殺傷すること」を禁止するのに対し、AP1第37条は背信行為により「殺傷し又は捕らえること」を禁止している⁶⁴。)することである。つまり、背信行為に該当するような偽装、欺瞞だけでは、禁止に該当せず、物の破壊についても禁止の対象とならないと理解される。

ウ 許容される奇計

奇計 (ruse of war) とは、敵を欺くことや無謀に行動させることであっても、武力紛争法に反せず、背信行為とならないものを指す。各国はカモフラージュを行い、その合法性を一貫して肯定してきた⁶⁵。ハーグ陸戦規則第 24 条では、「奇計ハ…適法ト認ム」として明確に許容し、AP1 第 37 条第 2 項では、「奇計は、禁止されない」として、「偽装、囮、陽動作戦及び虚偽の情報の使用」を奇計の例として挙げている。これらの行為に共通することは、敵を欺くものではあるが、武力紛争法が特別に保護する地位や標章への信頼を悪用するものではないという点である。

エ 本作戦における偽装の事実関係

報道やウクライナの公式発表等の公開情報によれば、スパイダーウェブ作戦では、ウクライナの攻撃兵器たる FPV ドローンを屋根に隠したコンテナハウスを積載した民間車両(トラクター及びトレーラー)が使用され、ロシアの航空宇宙軍基地の近傍からドローンが発射された。公開された映像から判断する限り、作戦に使用されたコンテナハウス及びこれを積載していた車両は、外観上、通常の民間物資、民間車両と見分けがつかない⁶⁶。一方で、これらの車両等が、武力紛争法において特別に保護される物(例えば、救急車、赤十字車両、国連車両など)として偽装されていたことを示唆する情報はない。

オ 小括―スパイダーウェブ作戦における偽装の法的分析

以上の事実関係を、これまで確認した法規範に照らして評価する。今回、ウクライナに よるスパイダーウェブ作戦における偽装は、民間車両等に偽装することにより、ロシア側

⁶⁴ 背信行為の禁止が、「捕らえること」まで慣習法であるかについては異論がある。国際刑事裁判所(ICC) 規程はハーグ陸戦規則の文言を使用しているのに対し、米国は AP1 非締約国であるが、背信行為により 敵を殺傷又は捕獲しないという原則を支持するとしている。 *Spura* note p.225.

⁶⁵ Kevin Jon Heller, "Disguising a Military Object as a Civilian Object: Prohibited Perfidy or Permissible Ruse of War?" *International Law Studies*, Volume 91, 2015, the Stockton Center for the Study of International Law, U.S. Naval War College, p.521.

⁶⁶ Fig.3 下右写真参照。

を欺く効果を狙ったものであることは明らかである⁶⁷。この偽装は、FPV ドローンの機体 及びその発射プラットフォームとしての軍事的性質を隠蔽し、秘密裏の移動と奇襲を容易 にすることを目的としたものであり、その態様はカムフラージュ(偽装)の一種と評価で きる⁶⁸。これは、背信行為の核心である「国際法上保護される人員の地位」や「国際法上特 別に保護される物の地位」を偽るものではなく、軍用の物を民用物に偽装する行為に留ま る。したがって、武力紛争法上、今回の作戦は、ロシア側を欺くものではあるとはいえ、 作戦として合法的な計略(奇計)の範疇であり、背信行為にはならないものと判断できる。

さらに、第二の論点として、仮にこの偽装が背信行為に該当すると解釈する余地があったとしても、武力紛争法が禁じるのは、背信行為そのものではなく、背信行為に訴えて敵を殺傷することである。今回のスパイダーウェブ作戦は、敵を殺傷することが目的ではなく、大型爆撃機等を破壊することを企図したものであった⁶⁹。

以上のことから、本作戦は、いずれの観点からしても欺瞞に関する武力紛争法上の禁止 行為に該当するものではないと結論付けられる。

(3) 自律型致死兵器システム(LAWS)に関する武力紛争法 ア 問題の所在

本作戦において使用された FPV ドローンには、人工知能 (AI) が搭載されていたと報道されている⁷⁰。本作戦において使用された FPV ドローンが、現在国際的に議論されている自律型致死兵器システム (LAWS) に該当するか否かを検討する。

イ LAWS に関する国際的議論と定義

現在、LAWS に関する国際的な議論は活発であるものの、条約等において普遍的に合意

⁶⁷ 類似のものとして、ISO 規格(40 フィート)の海上コンテナに発射機を収めたミサイルが、既に各国で開発導入が進められている。例えば、米国は、イージス艦等の艦艇に装備されている MK 41 垂直発射装置(VLS)を海上コンテナに収めたミサイル発射装置 MK 70 の配備を進めている。スウェーデンでも 20 フィートの海上コンテナ内に 4 基の RBS 15 グングニル対艦ミサイルの発射装置を収納したシステムを開発し、導入が進められている。ロシアも以前から同種の兵器を開発しており、40 フィートの海上コンテナに Club-K 3M54 対艦ミサイルの発射機を収めた装置を開発している。中国も、同様の YJ-18C 対艦対地巡航ミサイルを開発、配備を進めている。これらのミサイルは、海上及び陸上の輸送手段を利用でき、かつ、海上からでも陸上からでも発射できるという特徴を持つ。これらは、いずれも外見上(形状等の規格)は通常の海上コンテナと同じものである。したがって、この点において今回のスパイダーウェブ作戦で使用されたコンテナハウスに格納された FPV ドローンのケースが、特異というわけではない。

⁶⁸ ウクライナによるスパイダーウェブ作戦において、FPV ドローンを民間のコンテナハウスの二重屋根の下に隠したのは、明らかに意図的な隠蔽、偽装である。その一方で、意図しない隠蔽、偽装といえそうなものもある。例えば、戦時においても民間の鉄道やトラックの有蓋車やコンテナで、軍用の弾薬等を外観では分からない形で運搬することはありうる。これについては、特段「偽装」と呼ぶことはなく、非難されることもないように思われる。

⁶⁹ 真偽のほどは定かではないが、少なくともロシア国防省の発表では、この攻撃による死傷者は出ていないとしている。「ウクライナ、ロシアの空軍基地を大規模ドローン攻撃 \mathbb{Z} 1 兆円の損害 \mathbb{Z} 2 と主張」、CNN、2025 年 6 月 2 日、https://cnn.co.jp/world/35233713.html。

⁷⁰ *Spura* note 17.

された法的定義は未だ存在しない。主な議論は、特定通常兵器使用禁止制限条約(CCW:Convention on Certain Conventional Weapons)の LAWS に関する政府専門家会合(GGE: Group of Government Experts)の枠組みで進められている⁷¹。日本国政府は、「一度起動すれば、操作者の更なる介入なしに標的を識別し、選択し、殺傷力を持って交戦することができる」ものを自律型兵器システムと捉えている⁷²。赤十字国際委員会(ICRC)の定義では、「重要な機能において自律性を備えたあらゆる兵器システム、つまり、人間の介入なしに標的を選択し(捜索、探知、識別、追跡、または選択)、攻撃(武力を行使、無力化、損傷、破壊)できる兵器システム」とされている⁷³。これらから、LAWS の広く受け入れられている特徴は、初期起動後、人間の介入なしに標的を選択し、攻撃するという自律性にあるといえる。こうした LAWS は、次の兵器システムとは類似するが、明確に区別される必要がある。

- ・自動化兵器システム: CIWS (高性能 20 ミリ機関砲)等のミサイル迎撃システムのように、短時間にリアクションするため、事前に設定されたプログラムに基づき、特定の事象(例:ミサイルの接近)を契機に自動的に対処(迎撃)するもの。
- ・遠隔操作兵器システム: MQ-9 リーパー等の無人攻撃機のように、人間のオペレーターが、遠隔から操縦し、カメラの画像等を見て標的を識別し、兵器の発射を人間が直接制御するもの。
- ・AI 支援兵器システム: AI を用いて、標的認識(例:画面上に潜在的な標的を強調表示) やナビゲーションなどにおいて人間のオペレーターを支援するが、 最終的な意思決定権限は人間のオペレーターが保持するもの。

これらと LAWS との区別は、スパイダーウェブ作戦の事例を検討する上で極めて重要である。 LAWS は通常、一度起動されると標的の選択と攻撃のサイクルにおいて、人間がループ外(human out-of-the-loop)にある。LAWS は、人間によって事前に指定された標的を捕捉するのではなく、プログラムされた基準や学習に基づいて、多くの潜在的な目標の中から攻撃する標的を識別し選択して、攻撃を行うものである。特に重要なことは、こうした選択と攻撃の全てが、起動後は人間の介入なしに行われるという点である。つまり、飛行や標的の選択が自律的に行われても、攻撃に人間の承認を必要とする場合や、飛行や攻撃が自律的に行われるのであっても、標的の選択には人間の確認が必要なものは、いくらAI が重要な役割を果たしたとしても、完全な自律性を有せず、LAWS とは見做されない。

72 「LAWS分野における新興技術に係る我が国国連提出作業文書 要約」、外務省、hppts://www.mofa.go.jp/mofaj/files/100687670.pdf。

 $^{^{71}}$ 「自律型致死兵器システム(LAWS)について」、外務省、令和 6 年 6 月 24 日、hppts://www.mofa.go .jp/mofaj/dns/ca/page24=001191.html。

⁷³ Neil Davison, "A legal perspective: Autonomous weapon systems under international humanitarian law," ICRC, https://www.icrc.org/sites/default/files/document/file_list/autonomous_weapon_systems_under_international_humanitarian_law.pdf, p.5.

ウ FPV ドローンの AI 能力と作戦状況

報道やウクライナの公式発表によれば、スパイダーウェブ作戦で使用された FPV ドローンには、AI が搭載されていたとされる。この作戦では、広大な距離にまたがる複数の航空宇宙軍基地が同時に標的とされ、ロシア国内に密輸され、標的近くに輸送されたコンテナハウスから多数の FPV ドローンが発射された。攻撃されたのは、Tu-95、Tu-22M3 といった爆撃機や A-50 早期警戒管制機(AWACS)等であった。こうした状況、特に多数のドローンの同時運用や長距離かつ潜在的に不安定なロシアの通信環境、そして FPV ドローンの基本的な 1 対 1 操作の限界を考慮すると、全てのドローンがウクライナ本国からリアルタイムで個別に遠隔操作されていたと考えるのは非現実的である可能性があり、こうした運用上の制約は、ドローンがかなりの自律的な能力を持っていた可能性を一定程度示唆するものといえる。

攻撃に使用された FPV ドローンの AI を利用した自律的な能力に関しては、いくつかのパターンが考えられる。

- ① 自律的な飛行: AI により FPV ドローンの飛行安定を支援するだけでなく、カメラを 用いた視覚情報により、GPS 等の GNSS 情報に依存しない自律的航行を可能にした 可能性がある⁷⁴。
- ② 自律的な標的選択: 航空機の駐機場所は、毎日同じところとは限らない。このことを考えると、大まかな目標(例:特定の基地のエプロン地区)が人によって選定され、個々のドローンがその指定されたエリア内に駐機する多数の航空機の中から具体的な攻撃目標である特定の航空機を自律的に捜索、識別、選択し、攻撃目標とした可能性がある。
- ③ 自律的な攻撃実行(突入):攻撃効果(ロシア機の損害)を最大化するために、AI学習によって、機種別に異なる位置に、自律的に突入させたとされる。これは、航空機の燃料タンクの位置などの機種ごとの標的の特性(弱点)に基づいて、AIが最適な攻撃ポイントを自律的に認識した可能性を示唆する。

今回作戦に使用された FPV ドローンが、どのような自律的機能を利用したかについては明確にされておらず、一部の自律的機能の利用から、おおよそ全部に至る自律的機能の利用まで、様々なケースが考えられ、現時点では、確定的な論評はまだない。しかるに、ウクライナ保安庁が公表した動画⁷⁵を観察すると、いくつかの重要な点が明らかになる。

第一に、FPV ドローンの突入位置についての学習についてである。動画における FPV ド

⁷⁴ 今回使用されたドローンに搭載されていたという情報は確認できていないが、光学衛星会社が地表を撮影した情報に基づいて3Dマップを作成し、ドローンのカメラに映る画像と当該マップの地形を照合して、GPS 等の GNSS 情報に依らず自機位置をリアルタイムで判断できるソフトは既に販売され、ウクライナにおいても利用されている。

⁷⁵ 前掲注3参照。

ローンの突入位置は、Tu-95 については主翼の基部に、Tu-22M については機体中央付近に集中している。上述のとおり、攻撃翌日 (2025 年 6 月 2 日) にウクライナ保安庁の Facebook に投稿された写真に写る爆撃機には、赤色の十字で当該場所が示されており⁷⁶、また、博物館に保管されている同型機を使用して多数の角度から写真を撮影し、ドローンに攻撃箇所を AI 学習させたという記事があったが、FPV ドローンが狙い通りの場所に突入する動画は、これらの記述の内容を裏付けるものと言える。

第二に、FPV ドローンの通信安定性についてである。これは、公表された動画におけるカット数からある程度判断できる。公表された動画は、40 カットに及ぶが、このカット数は 40 機分の攻撃に相当すると考えて差し支えないと推察される。このことから、ウクライナは、少なくとも 40 機の FPV ドローンとは、通信が確立できていたことになる。ただし、全体で 117 機を用いたと発表⁷⁷されており、40 機分という数を十分に通信が確立されていたと評価すべきか否かは、議論が分かれる可能性がある。

第三は、自律動作の状況についてである。これは、"FAIL SAFE"の画面表示から把握できる。前述⁷⁸のとおり、この表示は、当該ドローンが何らかの理由で自動(自律)的に飛行(攻撃)していることを示すものである。この場合において、動画が受信できている(つまり、通信が確立できている)にもかかわらず、"FAIL SAFE"になっていることや、その割合が 6 割以上であることは、意図的に"FAIL SAFE"モード(自律モード)にしている可能性を排除できない。また、突入直前の機体だけでなく比較的遠距離地点を飛行しているドローンにも同様の表示があることから、搭載された AI システムは、ミサイルの終末誘導における画像照合のみに用いられるような限定的なものだけではないことも示唆される。

第四は、攻撃目標の自律的な選択に利用された可能性についてである。イヴァノヴォ基地においては、駐機中の A-50 早期警戒管制機を 2機の FPV ドローンが攻撃している。同基地は、ロシアにおける A-50 の根拠基地であるが、何故かドローンが攻撃した A-50 は、明らかに古びた機体で、レドームは全面的に錆(又は汚れ)に覆われ、1 つの機体はエンジンが片方搭載されていないなど、「人の目」には、明らかに用途廃止機と見受けられるものであった79。この事実は、ドローンに搭載された AI が対象の形状を識別できる一方で、新

⁷⁶ Fig.2 写真下部参照。

⁷⁷ 攻撃翌日(2025年6月2日)、ゼレンスキー大統領の X(旧 Twitter)で「作戦には合計 117機のドローンが使用され、同数のドローン操縦士が関与した。」と発表された。https://x.com/ZelenskyyUa/status/1929273356425248853. 尤も、これはウクライナ側の発表であり、実際どれくらいのドローンが作戦に関与したかは不明である。特に疑問なのは、Fig.3 中右の写真が示すように、コンテナハウス 1 戸当たり 36機程度、つまりトレーラー1 両(コンテナハウス×2)では、最大 72機搭載できる仕様であり、これからすると 5 か所で最大 360機搭載可能なはずであり、発表された機数とは大きく乖離している。78本稿8頁。

⁷⁹ ロシアは、ウクライナ側の攻撃を避けるために、地上に大型機の絵を描いたり、駐機している機体の上にタイヤを載せて赤外線での画像判断を惑わしたりするなど様々な工夫をしているが、用途廃止機をデコイとして設置することも意図的に行われていたようである。"What Ukraine's Unprecedented Drone Attack Means For Russia's Bomber Force," The War Zone, June 2, 2025, https://www.twz.com/air/what-ukraines-unprecedented-drone-attack-means-for-russian-bomber-force. 今回の A-50 攻撃において、ウクライナのドローンは、用途廃止機をデコイとして設置したものに騙された可能性がある。

旧の判別には限界がある可能性を示唆している。加えて、"FAIL SAFE" モードで飛行(接近)していた状況からも、人間による(カメラを通じた)目視での攻撃目標の選定ではなく、駐機中の複数ある機体の中からドローン自身が自律的に攻撃対象を選定した可能性を排除できない。

エ 小括—FPV ドローンの LAWS 該当性

動画を公開したウクライナ保安庁の公式ウェブサイトのページには、「作戦中は、自律型人工知能アルゴリズムとオペレーターの手動介入を組み合わせた最新の UAV 制御技術が使用された。特に、一部の無人航空機は、信号が途絶えたため、事前に計画された経路に沿って人工知能 (AI) を用いた任務遂行に切り替えた。そして、指定された標的に接近して接触すると、弾頭が自動的に起爆した。」と説明がある80が、この説明がすべて正確であるか否かは不明である。サイバーセキュリティの専門ニュースサイトである Security Boulevard は、この作戦について「ドローンは自律的に飛行し、AI を活用して人間の介入なしに標的を識別・攻撃した。」と報じている81。別の報道では、「SmartPilot システムによりドローンは…高価値標的を自律的に位置特定できる」82といった記述があり、これらの報道は、ウクライナ保安庁が公表した動画に見受けられる高度な自律性を示唆する。また、ISW (Institute for the Study of War, 戦争研究所) は、ウクライナが既に AI 搭載の「マザーシップドローン」GOGOL-M を開発しており、これが「自律的に標的を識別、発見、攻撃できる」と言及している83。これらの技術が、スパイダーウェブ作戦に使用されていた場合、LAWS の定義に相当近づく可能性があるといえよう。

他方で、CSIS(戦略国際問題研究所)の分析では、ウクライナの AI は標的認識やナビゲーションを強化するが、「特に交戦決定において、人間の監督が依然として極めて重要であり、人間参加型(human-in-the-loop)アプローチを反映している」とし、LAWS とは異なることを示唆している 84 。Tech Policy Press も、「ウクライナは人間参加型アプローチを優先し、AI システムが軍事作戦における人間の意思決定を置き換えるのではなく、支援することを保証している」と報じている 85 。

⁸⁰ Spura note 31

⁸¹ "AI-Powered Drones: Ukraine's Historic Strikes on Russian Aircraft," *Security Boulevard*, June 2, 2025, https://securityboulevard.com/2025/06/ai-powered-drones-ukraines-historic-strikes-on-russian-aircraft/.

⁸² "Operation Spider Web: How Ukraine reportedly used AI drone sorties worth 10 iPhone 16 Pro to target Russian bomber aircrafts," *The Times of India*, June 2, 2025, https://timesofindia.indiatimes.com/technology/technews/operation-spider-web-how-ukraine-reportedly-used-ai-drone-sorties-worth-10-iphone-16-pro-to-target-russian-bomber-aircrafts/articleshow/121564436.cms.

⁸³ Kateryna Stepanenko, "The Battlefield AI Revolution Is Not Here Yet: The Status of Current Russian and Ukrainian AI Drone Efforts," Special Report, Institute for the Study of War, June 2, 2025, https://understandingwar.org/backgrounder/battlefield-ai-revolution-not-here-yet-status-current-russian-and-ukrainian-ai-drone.

⁸⁴ Kateryna Bondar, Ukraine's Future Vision and Current Capabilities for Waging AI-Enabled Autonomous Warfare, Center for Strategic and International Studies, March 2025, p.4, https://www.csis.org/analysis/ukraines-future-vision-and-current-capabilities-waging-ai-enabled-autonomous-warfare.

⁸⁵ Gulsanna Mamediieva, "Military AI: Lessons from Ukraine," Tech Policy Press, March 20, 2025, https://www.techpolicy.press/military-ai-lessons-from-ukraine.

現時点では、今回の攻撃に使用された FPV ドローンが、直ちに LAWS であるとまでは確定できない。しかしながら、LAWS そのものではないにせよ、FPV ドローンが搭載する AI のシステムが、ミサイルの終末誘導で画像照合に用いられるような一部機能の限定的なものではなく、むしろ LAWS に近い多様かつ高度な自律性を有している可能性があり、極めて興味深い事例として、継続的な注視が必要であるといえよう。また、一定程度であれ自律的に攻撃を行うドローンがこれほど大量かつ同時に作戦で使用されたのは、初めての事例である可能性がある。AI を本格的かつ直接的に攻撃に使用したことも、本作戦のもう一つの大きな特徴の一つといえよう。

おわりに:イノベーションと国際法秩序への示唆

2025年6月1日にウクライナにより実施されたスパイダーウェブ作戦は、小型の FPV ドローン群が、ロシアの航空基地を同時多発的に攻撃し、戦略爆撃機を含む多数の航空機に損害を与えたという点で、現代戦に関する作戦・戦術的、国際法的に極めて重大な含意を有していた。

作戦・戦術レベルでは、停戦交渉において「カードが無い」とトランプ米大統領に言われたウクライナは、極めて強力な秘密のカードを持っていたことになる。小型で安価な FPV ドローンが巨大で高価な爆撃機を撃破する映像は世界に衝撃を与えたが、これに対しロシアは、作戦後の 6 月 5 日以降、ウクライナ全土に過去最大級の巡航ミサイル、弾道ミサイル、そしてドローンによる複合攻撃を連続して実施し、その戦力が未だ健在であることを誇示してみせた。とはいえ、Tu-95 等の損失を補うため、これまで温存されてきた希少なTu-160 戦略爆撃機の投入を余儀なくさせるなど、ロシアの航空戦力に具体的な影響を与えた兆候は明らかとなっている。

また、本作戦が各国の軍隊、とりわけ空軍の基地防衛に波及する影響は計り知れない。ロシアの奥深くで起きたことは、他のどの国でも起こり得る。安価なドローン群による攻撃という新たな脅威に対し、強大な米軍ですら有効な対策を確立できておらず、その首脳らが危機感を露わにしているのが現状である。本作戦は、ウクライナ紛争で緒戦から見られたドローンの活用が新たな段階に入ったことを示すと同時に、イノベーションが技術の革新そのものだけでは成り立たず、技術の革新を如何に活用するかというアイデアこそがイノベーションであることを強く意味するものとなっている86。

そうしたアイデアの中で、欺瞞を利用したことも大きなポイントである。本作戦の少し前に発表されていたミック・ライアン (Mick Ryan) オーストラリア陸軍退役少将と著名な

 $^{^{86}}$ この点を指摘するものとして、"Ukraine's Operation Spiderweb Was a Wakeup Call for the West, Too," *World Politics Review*, June 11, 2025, https://www.worldpoliticsreview.com/ukraine-operation-spiderweb-west/ がある。同記事では、「重要なのは技術ではなく、それをどう使うかだ。…(中略)…新たな軍事技術の導入は軍事革命の必要条件ではあるものの、十分条件ではない。真の変化をもたらすためには、新技術は斬新かつ革新的な方法で使用されなければならない。」、「スパイダーウェブ作戦の真価及び成功の要因は、使用された技術そのものではなく、技術の強みを革新的な方法で活用し、戦術的優位性を獲得しながら、支障なく作戦を遂行した点にある。」としている。

国際政治学者であるピーター・W・シンガー(Peter Warren Singer)との共著の「戦争における欺瞞の未来:ウクライナからの教訓(The Future of Deception in War: Lessons from Ukraine)」では、ウクライナ戦の教訓として、敵の背後にドローンでスピーカーを投下し、ウクライナ軍の音声を流してロシア軍を混乱させた事例など 87 新たなテクノロジーを利用した欺瞞の重要性をあげていたが、本作戦も欺瞞を利用して奇襲を成功させたものであった。シンガーらは、欺瞞作戦について、ロシアや中国では伝統的に重視され実行され続けてきているのに対し、西側諸国の多くではドクトリンや概念止まりで運用原則として位置づけられていないこと、欺瞞については安全保障研究では生物学よりも科学的研究がなされていないこと等を指摘し 88 、西側諸国が「将来の欺瞞の犠牲者とならないように今すぐ行動を起こさなければなら」ず、「欺瞞作戦に対して準備が出来ていると自らを欺くべきではない」と強く警告している 89 。

更に、作戦そのものではないが、その後の情報戦の様相も特徴的であった。直後から様々な研究機関や報道機関が民間の衛星画像を用いて攻撃効果判定(BDA)を実施し、その詳細な分析結果を公表した。これに対しロシア側は、被害機体を迅速に撤去、清掃することで、正確な損害評価を妨害した。これは、飛行場の機能回復(FOD除去)という軍事的に当然の措置であると同時に、敵に正確な情報を与えないという情報戦の一環でもあり、示唆に富むものであった。

法的レベルのものとしては、本作戦の実行日とその合法性との関わりについても触れたい。今回のスパイダーウェブ作戦が行われた6月1日は、日曜日であった。指摘されるように戦時中の出来事である点と開戦時の出来事であるという点で違いはあるが、1945年12月7日(現地時間)の真珠湾攻撃も日曜日であった。これは偶然ではなく、基地の警戒態勢が手薄になる週末を意図的に狙ったものとされる90。スパイダーウェブ作戦では、結果として攻撃を成功させただけでなく、基地人員への被害を抑えるという副次的な効果も生み出した。これが意図されていたかは不明だが、結果的に作戦の合法性を補強する一因ともなっている。

ロシアが本作戦を「テロ攻撃」と非難するように、民用物に偽装した攻撃は一見すると 違法な印象を与えかねない懸念があるかもしれない。しかし国際法の観点からは、本稿で 分析したように、作戦の実施主体(ウクライナ保安庁)の適法性、欺瞞の手法(奇計の範 疇)、そして AI を搭載した兵器の運用(LAWS とまでは言えない)といったいずれの点に おいても、現行の武力紛争法の枠内で行われた、合法的な軍事作戦と評価できる。そして、

⁸⁷ Mick Ryan and Peter W. Singer, The Future of Deception in War: Lessons from Ukraine, New America, May 27, 2025, p.8.

⁸⁸ *Ibid.*, pp.10-14.

⁸⁹ *Ibid.*, p.7.

⁹⁰ 真珠湾攻撃を12月8日日曜日に決定した理由に関し、軍令部総長長野修身大将は、開戦予定日を決定する際の上奏において、「武力攻撃発動時期ヲ12月8日ニ予定シタル主ナル理由」として、「米艦船ノ眞珠湾在泊比較的多ク且ソノ休養日たる日曜日ヲ有利」とした。『戦史叢書 ハワイ作戦』、防衛庁防衛研究所、1967年、213頁。

この結論が意味することは極めて重大である。この種の攻撃が国際法上非難され得ないということは、今後、同様の戦術が世界中の紛争で多発する蓋然性が極めて高いことを強く示唆することとなるからである。

以上見てきたようにスパイダーウェブ作戦は、これからの戦闘の姿を強く示唆するものであった。本作戦は、単なる個別の軍事行動の成功事例としてではなく、武力紛争の様態そのものの変容の予兆として捉えられるべきでものあり、すべての国家の軍事関係者に対し、防衛体制の再設計に関する深い考察と抜本的な対策の必要性を突きつけているといえよう。

本レポートにおける見解は、航空自衛隊幹部学校航空研究センターにおける研究の一環として発表する執筆者個人のものであり、防衛省又は航空自衛隊の見解を表すものではありません。

やまだ たかなり

山田 尊也 2等空佐

修士(社会科学)。防衛大学校航空宇宙工学科卒。同総合安全保障研究科修了。航空幕僚監部、統合幕僚監部や各級司令部において指揮官の法的補佐を行う法務幕僚として勤務の傍ら、大阪大学大学院国際公共政策研究科で招聘研究員、大阪学院大学にて法学特別講義のゲストスピーカー等を務めた。2023年10月より現職。著作に、「宇宙での戦闘—イラン発射弾道ミサイル迎撃対処と宇宙戦法規」、JASIレポート、R6-07、2024年、共著で、真山全、山田「船舶自動識別装置(AIS)データによる国際海峡認定—国際海峡の日本領域内の存在可能性に関する海洋法的試論」『国際安全保障』第47巻第4号、2020年などがある。専門分野は、主に宇宙戦など先端技術分野を用いる作戦及びそれに適用される法規について、工学的側面と安全保障学的・法的側面との文理融合的な研究を行う。